DOI QR코드

DOI QR Code

Optimization of Conditions for the Maximum Bacteriocin Production of Enterococcus faecium DB1 Using Response Surface Methodology

  • Choi, Hye-Young (Department of Food Science and Technology, Dongguk University) ;
  • Kim, Joon-Soo (Department of Food Science and Technology, Dongguk University) ;
  • Kim, Wang-June (Department of Food Science and Technology, Dongguk University)
  • Received : 2009.08.05
  • Accepted : 2011.02.14
  • Published : 2011.04.30

Abstract

The bacteriocin-producing lactic acid bacteria Enterococcus faecium DB1 was isolated from Korean traditional gajami sikhae. Culture conditions were optimized by response surface methodology (RSM) to maximize bacteriocin DB1 production. E. faecium DB1 displayed the highest bacteriocin activity when grown in modified MRS medium containing sucrose, rather than glucose, as a carbon source. The effects of temperature, initial pH, and sucrose concentration were tested to determine the optimum conditions for maximum bacteriocin production by E. faecium DB1. A central composite design was used to control the three variables in the experiment. RSM revealed that the optimum values for bacteriocin production were 27.66 g/L sucrose, temperature of $34.37^{\circ}C$, and an initial pH of 6.54. A 2.08-fold increase in bacteriocin production was obtained with sucrose-containing MRS medium compared to production in standard MRS medium.

Keywords

References

  1. Abdel-Fattah, Y. R., Saeed, H. M., Gohar, Y. M., and El-Baz, M. A. (2005) Improved production of Pseudomonas aeruginosa uricase by optimization of process parameters through statistical experimental designs. Process Biochem. 40, 1707-1714. https://doi.org/10.1016/j.procbio.2004.06.048
  2. Aesen, I. M., Moretro, T., Katla, T., Axelsson, L., and Storro, I. (2000) Influence of complex nutrients, temperature and pH on bacteriocins production by Lactobacillus sakei CCUG 42687. Appl. Microbiol. Biotechnol. 53, 159-166. https://doi.org/10.1007/s002530050003
  3. Adinarayana, K., Ellaiah, P., Srinivasulu, B., Devi, R. B., and Adinarayana, G. (2003) Response surface methodological approach to optimize the nutritional parameters for neomycin production by Streptomyces marinensis under solid-state fermentation. Process Biochem. 38, 1565-1572. https://doi.org/10.1016/S0032-9592(03)00057-8
  4. Aymerich, T., Artigas, M. G., Garriga, M., Monfort, J. M., and Hugas, M. (2000) Effect of sausage ingredients and additives on the production of enterocin A and B by Enterococcus faecium CTC492. Optimization of in vitro production and anti-listerial effect in dry fermented sausages. J. Appl. Microbiol. 88, 686-694. https://doi.org/10.1046/j.1365-2672.2000.01012.x
  5. Barnes, E. M. (1964) Distribution and properties of serological types of Streptococcus faecium, Streptococcus durans and related strains. J. Appl. Bacteriol. 27, 461-470. https://doi.org/10.1111/j.1365-2672.1964.tb05055.x
  6. Bogovic-Matijasic, B. and Rogelj, I. (1998) Bacteriocin complex of Lactobacillus acidophilus LF221-production studies in MRS-media at different pH-values and effect against Lactobacillus helveticus ATCC 15009. Process. Biochem. 33, 345-352. https://doi.org/10.1016/S0032-9592(97)00073-3
  7. Cheigh, C. I., Choi, H. J., Park, H., Kim, S. B., Kook, M. C., Kim, T. S., Hwang, J. K., and Pyun, Y. R. (2002) Influence of growth conditions on the production of a nisin-like bacteriocin by Lactococcus lactis subsp. lactis A164 isolated from kimchi. J. Biotech. 95, 225-235. https://doi.org/10.1016/S0168-1656(02)00010-X
  8. Cleveland, J., Montville, T. J., Nes, I. F., and Chikindas, M. L. (2001) Bacteriocins: safe, natural antimicrobials for food preservation. Int. J. Food Microbiol. 71, 1-20. https://doi.org/10.1016/S0168-1605(01)00560-8
  9. Cotter, P. D., Hill, C., and Ross, R. P. (2005) Bacteriocins: developing innate immunity for food. Nat. Rev. 3, 777-788. https://doi.org/10.1038/nrmicro1273
  10. Daeschel, M. A., Hoover, D. G., and L. R. Steenson. (1993) Applications and interactions of bacteriocins from lactic acid bacteria in foods and beverages. Bacteriocins of lactic acid bacteria. Academic Press, Inc., NY. pp. 63-91.
  11. Dale, B. M., Walter, J. G., Wayne, L. T., and Michael, J. M. (2007) Global and local optimization using radial basis function response surface models. Appl. Math. Model 31, 2095-2110. https://doi.org/10.1016/j.apm.2006.08.008
  12. De Vuyst, L. and Vandamme, E. J. (1992) Influence of the carbon source on nisin production in Lactococcus lactis subsp. lactis batch fermentations. J. Gen. Microbiol. 138, 571-578. https://doi.org/10.1099/00221287-138-3-571
  13. De Vuyst, L. and Vandamme, E. J. (1993) Influence of the phosphorus and nitrogen source on nisin production in Lactococcus lactis subsp. lactis batch fermentations using a complex medium. Appl. Microbiol. Biotechnol. 40, 17-22. https://doi.org/10.1007/BF00170422
  14. De Vuyst, L. (1995) Nutritional factors affecting nisin production by Lactococcus lactis lactis NIZO 22186 in a synthetic medium. J. Appl. Bacteriol. 78, 28-33. https://doi.org/10.1111/j.1365-2672.1995.tb01669.x
  15. Delgado, A., Noe-Arroyo Lopez, F., Brito, D., Peres, C., Fevereiro, P., and Garrido-Fernndez, A. (2007) Optimum bacteriocin production by Lactobacillus plantarum 17.2b requires absence of NaCl and apparently follows a mixed metabolite kinetics. J. Biotechnol. 130, 193-201. https://doi.org/10.1016/j.jbiotec.2007.01.041
  16. Elibol, M. (2004) Optimization of medium composition for actinorhodin production by Streptomyces coelicolor A3(2) with response surface methodology. Process Biochem. 39, 1057-1062. https://doi.org/10.1016/S0032-9592(03)00232-2
  17. Floriano, B., Ruiz-Barba, J. L., and Jimenez-Diaz, R. (1998) Purification and genetic characterization of enterocin I from Enterococcus faecium 6T1a, a novel antilisterial plasmid encoded bacteriocin which does not belong to the pediocin family of bacteriocins. Appl. Environ. Microb. 64, 4883-4890.
  18. Food and Drug Administration (1998) Nisin preparation: affirmation of GRAS status as a direct human food ingredient. Fed. Regist. 53, 11247-11251.
  19. Foulquie' Moreno, M. R., Sarantinopoulos, P., Tsakalidou, E., and De Vuyst, L. (2006) The role and application of enterococci in food and health. Int. J. Food Microbiol. 106, 1-24. https://doi.org/10.1016/j.ijfoodmicro.2005.06.026
  20. Franz, C. M., Holzapfel, W. H., and Stiles, M. E. (1999) Enterococci at the crossroads of food safety? Int. J. Food Microbiol. 47, 1-24. https://doi.org/10.1016/S0168-1605(99)00007-0
  21. Ganzle, M., Weber, S., and Hammes, W. (1999) Effect of ecological factors on the inhibitory spectrum and activity of bacteriocins. Int. J. Food Microbiol. 46, 207-217. https://doi.org/10.1016/S0168-1605(98)00205-0
  22. Gelsomino, R., Vancanneyt, M., Condon, S., Swings, J., and Cogan, T. M. (2001) Enterococcal diversity in the cheese making environment of an Irish Cheddar-type cheese making factory. Int. J. Food Microbiol. 71, 177-188. https://doi.org/10.1016/S0168-1605(01)00620-1
  23. Giraffa, G., Carminati, D., and Torri Tarelli, G. (1995) Inhibition of Listeria innocua in milk by bacteriocin-producing Enterococcus faecium 7C5. J. Food Prot. 58, 621-623.
  24. Giraffa, G. (2003) Functionality of enterococci in dairy products. Int. J. Food Microbiol. 88, 215-222. https://doi.org/10.1016/S0168-1605(03)00183-1
  25. Jack, R. W., Tagg, J. R., and Ray, B. (1995) Bacteriocins of gram-positive bacteria. Microbiol. Rev. 59, 171-200.
  26. Park, J. S., Woo, J. S., and Hwang, S. J. (2007) Development and optimization of a novel oral controlled delivery system for tamsulosin hydrochloride using response surface methodology. Int. J. Pharm. 341, 97-104. https://doi.org/10.1016/j.ijpharm.2007.03.051
  27. John, W. M. M. and Ingrid, J. B. (1991) Identification and characterization of the lantibiotic nisin variant. Eur. J. Biochem. 201, 581-584. https://doi.org/10.1111/j.1432-1033.1991.tb16317.x
  28. Kim, W. J. (1993) Bacteriocins of lactic acid bacteria: their potentials as food biopreservative. Food Rev. Int. 9, 299-313. https://doi.org/10.1080/87559129309540961
  29. Kitaoka, M. and Hayashi, K. (2002) Carbohydrate-processing phosphorolytic enzymes. Trends Glycosci. Glycotechnol. 14, 35-50. https://doi.org/10.4052/tigg.14.35
  30. Klaenhammer, T. R. (1993) Genetics of bacteriocins produced by lactic acid bacteria. FEMS Microbiol. Rev. 12, 39-85. https://doi.org/10.1111/j.1574-6976.1993.tb00012.x
  31. Krier, F., Revol-Junelles, A. M., and Germain. P. (1998) Influence of temperature and pH on production of two bacteriocins by Leuconostoc mesenteroides subsp. mesenteroides FR52 during batch fermentation. Appl. Microbiol. Biotechnol. 50, 359-363. https://doi.org/10.1007/s002530051304
  32. Leal-Sanchez, M. V., Jimenez-Diaz, R., Maldonado-Barragan, A., Garrido-Fernandez, A., and Ruiz-Barba, J. L. (2002) Optimization of bacteriocin production by batch fermentation of Lactobacillus plantarum LPCO10. Appl. Environ. Microbiol. 68, 4465-4471. https://doi.org/10.1128/AEM.68.9.4465-4471.2002
  33. Lee H. J. and Kim, W. J. (2010) Isolation and characterization of anti-listerial and amylase sensitive enterocin producing Enterococcus faecium DB1 from gajami-sikhae, A fermented flat fish in Korea. Food Sci. Biotechnol. 19, 373-381. https://doi.org/10.1007/s10068-010-0053-7
  34. Li, C., Bai, J., Cai, Z., and Ouyang, F. (2001) Optimization of a cultural medium for bacteriocin production by Lactococcus lactis response surface methodology. J. Biotechnol. 93, 27-34.
  35. Matsusaki, H., Endo, N., Sonomoto, K., and Ishizaki, A. (1996) Lantibiotic nisin Z fermentative production by Lactococcus lactis 10-1: relationship between production of the lantibiotic and lactate and cell growth. Appl. Microbiol. Biotechnol. 45, 36-40. https://doi.org/10.1007/s002530050645
  36. Oh, S., Rheem, S., Sim, J., Kim, S., and Baek, Y. (1995) Optimizing conditions for the growth of Lactobacillus casei YIT 9018 in tryptone-glucose medium by using response surface methodology. Appl. Environ. Microb. 61, 3809-3814.
  37. O'Sullivan, L., Ross, R. P., and Hill, C. (2002) Potential of bacteriocin producing lactic acid bacteria for improvements in food safety and quality. Biochimie. 84, 593-604. https://doi.org/10.1016/S0300-9084(02)01457-8
  38. Parente, E. and Ricciardi, A. (1994) Influence of pH on the production of enterocin 1146 during batch fermentation. Lett. Appl. Microbiol. 19, 12-15. https://doi.org/10.1111/j.1472-765X.1994.tb00891.x
  39. Piyushkumar, M., Kiran, D., and Lele, S. S. (2007) Application of response surface methodology to cell immobilization for the production of palatinose. Bioresource Technol. 98, 2892-2896. https://doi.org/10.1016/j.biortech.2006.09.046
  40. Reunanen, J. and Saris, P. E .J. (2009) Survival of nisin activity in intestinal environment. Biotechnol. Lett. 31, 1229-1232. https://doi.org/10.1007/s10529-009-9995-3
  41. Ross, R.P., Galvin, M., McAuliffe, O., Morgan, S. M., Ryan, M. P., Twomey, D. P., Meaney, and W. J., Hill, C. (1999) Developing applications for lactococcal bacteriocins. Antonie van Leeuwenhoek 76, 337-346. https://doi.org/10.1023/A:1002069416067
  42. Ruguo Ho (1999) Food product design. CRC Press, Boca Raton London New York Washington, DC. pp. 56-59.
  43. Sabia, C., Manicardi, G., Messi, P., de Niederhausern, S., and Bondi, M. (2002) Enterocin 416K1, an antilisterial bacteriocin produced by Enterococcus casseliflavus IM 416K1 isolated from Italian sausages. Int. J. Food Microbiol. 75, 163-170. https://doi.org/10.1016/S0168-1605(01)00741-3
  44. Senesi, S., Celandroni, F., Tavanti, A., and Ghelardi, E. (2001) Molecular characterization and identification of Bacillus clausii strains marketed for use in oral bacteriotherapy. Appl. Environ. Microb. 67, 834-839. https://doi.org/10.1128/AEM.67.2.834-839.2001
  45. Settanni, L. and Corsetti, A. (2008) Application of bacteriocins in vegetable food biopreservation. Int. J. Food Microbiol. 121, 123-138. https://doi.org/10.1016/j.ijfoodmicro.2007.09.001
  46. Steinmetz, M. (1993) Carbohydrate catabolism: pathways, enzymes, genetic regulation, and evolution. In: Bacillus subtilis and other Gram-positive bacteria: biochemistry, physiology and molecular genetics. Sonenshein, A. L. (ed) ASM, Washington, DC, pp. 157-170.
  47. Strobel, R. J. and Sullivan, G. R. (1999) Manual of industrial microbiology and biotechnology, 2nd ed, ASM Press, Washington, DC.
  48. Vignolo, G. M., Kairuz, M. N., Ruiz-Holgado, A. A. P., and Oliver, G. (1995) Influence of growth conditions on the production of lactocin 705, a bacteriocin produced by Lactobacillus casei CRL 705. J. Appl. Bacteriol. 78, 5-10. https://doi.org/10.1111/j.1365-2672.1995.tb01665.x
  49. Xiaojie, L., Guoqing, H., Qihe, C. (2003) Culture medium optimization for producing cellulose by Trichoderma koningii ZJ5. J. Zhejiang Univ. (-Sc. A). 5, 623-628.

Cited by

  1. Fermentation factors influencing the production of bacteriocins by lactic acid bacteria: a review vol.7, pp.47, 2017, https://doi.org/10.1039/C6RA24579J