References
- Abdel-Fattah, Y. R., Saeed, H. M., Gohar, Y. M., and El-Baz, M. A. (2005) Improved production of Pseudomonas aeruginosa uricase by optimization of process parameters through statistical experimental designs. Process Biochem. 40, 1707-1714. https://doi.org/10.1016/j.procbio.2004.06.048
- Aesen, I. M., Moretro, T., Katla, T., Axelsson, L., and Storro, I. (2000) Influence of complex nutrients, temperature and pH on bacteriocins production by Lactobacillus sakei CCUG 42687. Appl. Microbiol. Biotechnol. 53, 159-166. https://doi.org/10.1007/s002530050003
- Adinarayana, K., Ellaiah, P., Srinivasulu, B., Devi, R. B., and Adinarayana, G. (2003) Response surface methodological approach to optimize the nutritional parameters for neomycin production by Streptomyces marinensis under solid-state fermentation. Process Biochem. 38, 1565-1572. https://doi.org/10.1016/S0032-9592(03)00057-8
- Aymerich, T., Artigas, M. G., Garriga, M., Monfort, J. M., and Hugas, M. (2000) Effect of sausage ingredients and additives on the production of enterocin A and B by Enterococcus faecium CTC492. Optimization of in vitro production and anti-listerial effect in dry fermented sausages. J. Appl. Microbiol. 88, 686-694. https://doi.org/10.1046/j.1365-2672.2000.01012.x
- Barnes, E. M. (1964) Distribution and properties of serological types of Streptococcus faecium, Streptococcus durans and related strains. J. Appl. Bacteriol. 27, 461-470. https://doi.org/10.1111/j.1365-2672.1964.tb05055.x
- Bogovic-Matijasic, B. and Rogelj, I. (1998) Bacteriocin complex of Lactobacillus acidophilus LF221-production studies in MRS-media at different pH-values and effect against Lactobacillus helveticus ATCC 15009. Process. Biochem. 33, 345-352. https://doi.org/10.1016/S0032-9592(97)00073-3
- Cheigh, C. I., Choi, H. J., Park, H., Kim, S. B., Kook, M. C., Kim, T. S., Hwang, J. K., and Pyun, Y. R. (2002) Influence of growth conditions on the production of a nisin-like bacteriocin by Lactococcus lactis subsp. lactis A164 isolated from kimchi. J. Biotech. 95, 225-235. https://doi.org/10.1016/S0168-1656(02)00010-X
- Cleveland, J., Montville, T. J., Nes, I. F., and Chikindas, M. L. (2001) Bacteriocins: safe, natural antimicrobials for food preservation. Int. J. Food Microbiol. 71, 1-20. https://doi.org/10.1016/S0168-1605(01)00560-8
- Cotter, P. D., Hill, C., and Ross, R. P. (2005) Bacteriocins: developing innate immunity for food. Nat. Rev. 3, 777-788. https://doi.org/10.1038/nrmicro1273
- Daeschel, M. A., Hoover, D. G., and L. R. Steenson. (1993) Applications and interactions of bacteriocins from lactic acid bacteria in foods and beverages. Bacteriocins of lactic acid bacteria. Academic Press, Inc., NY. pp. 63-91.
- Dale, B. M., Walter, J. G., Wayne, L. T., and Michael, J. M. (2007) Global and local optimization using radial basis function response surface models. Appl. Math. Model 31, 2095-2110. https://doi.org/10.1016/j.apm.2006.08.008
- De Vuyst, L. and Vandamme, E. J. (1992) Influence of the carbon source on nisin production in Lactococcus lactis subsp. lactis batch fermentations. J. Gen. Microbiol. 138, 571-578. https://doi.org/10.1099/00221287-138-3-571
- De Vuyst, L. and Vandamme, E. J. (1993) Influence of the phosphorus and nitrogen source on nisin production in Lactococcus lactis subsp. lactis batch fermentations using a complex medium. Appl. Microbiol. Biotechnol. 40, 17-22. https://doi.org/10.1007/BF00170422
- De Vuyst, L. (1995) Nutritional factors affecting nisin production by Lactococcus lactis lactis NIZO 22186 in a synthetic medium. J. Appl. Bacteriol. 78, 28-33. https://doi.org/10.1111/j.1365-2672.1995.tb01669.x
- Delgado, A., Noe-Arroyo Lopez, F., Brito, D., Peres, C., Fevereiro, P., and Garrido-Fernndez, A. (2007) Optimum bacteriocin production by Lactobacillus plantarum 17.2b requires absence of NaCl and apparently follows a mixed metabolite kinetics. J. Biotechnol. 130, 193-201. https://doi.org/10.1016/j.jbiotec.2007.01.041
- Elibol, M. (2004) Optimization of medium composition for actinorhodin production by Streptomyces coelicolor A3(2) with response surface methodology. Process Biochem. 39, 1057-1062. https://doi.org/10.1016/S0032-9592(03)00232-2
- Floriano, B., Ruiz-Barba, J. L., and Jimenez-Diaz, R. (1998) Purification and genetic characterization of enterocin I from Enterococcus faecium 6T1a, a novel antilisterial plasmid encoded bacteriocin which does not belong to the pediocin family of bacteriocins. Appl. Environ. Microb. 64, 4883-4890.
- Food and Drug Administration (1998) Nisin preparation: affirmation of GRAS status as a direct human food ingredient. Fed. Regist. 53, 11247-11251.
- Foulquie' Moreno, M. R., Sarantinopoulos, P., Tsakalidou, E., and De Vuyst, L. (2006) The role and application of enterococci in food and health. Int. J. Food Microbiol. 106, 1-24. https://doi.org/10.1016/j.ijfoodmicro.2005.06.026
- Franz, C. M., Holzapfel, W. H., and Stiles, M. E. (1999) Enterococci at the crossroads of food safety? Int. J. Food Microbiol. 47, 1-24. https://doi.org/10.1016/S0168-1605(99)00007-0
- Ganzle, M., Weber, S., and Hammes, W. (1999) Effect of ecological factors on the inhibitory spectrum and activity of bacteriocins. Int. J. Food Microbiol. 46, 207-217. https://doi.org/10.1016/S0168-1605(98)00205-0
- Gelsomino, R., Vancanneyt, M., Condon, S., Swings, J., and Cogan, T. M. (2001) Enterococcal diversity in the cheese making environment of an Irish Cheddar-type cheese making factory. Int. J. Food Microbiol. 71, 177-188. https://doi.org/10.1016/S0168-1605(01)00620-1
- Giraffa, G., Carminati, D., and Torri Tarelli, G. (1995) Inhibition of Listeria innocua in milk by bacteriocin-producing Enterococcus faecium 7C5. J. Food Prot. 58, 621-623.
- Giraffa, G. (2003) Functionality of enterococci in dairy products. Int. J. Food Microbiol. 88, 215-222. https://doi.org/10.1016/S0168-1605(03)00183-1
- Jack, R. W., Tagg, J. R., and Ray, B. (1995) Bacteriocins of gram-positive bacteria. Microbiol. Rev. 59, 171-200.
- Park, J. S., Woo, J. S., and Hwang, S. J. (2007) Development and optimization of a novel oral controlled delivery system for tamsulosin hydrochloride using response surface methodology. Int. J. Pharm. 341, 97-104. https://doi.org/10.1016/j.ijpharm.2007.03.051
- John, W. M. M. and Ingrid, J. B. (1991) Identification and characterization of the lantibiotic nisin variant. Eur. J. Biochem. 201, 581-584. https://doi.org/10.1111/j.1432-1033.1991.tb16317.x
- Kim, W. J. (1993) Bacteriocins of lactic acid bacteria: their potentials as food biopreservative. Food Rev. Int. 9, 299-313. https://doi.org/10.1080/87559129309540961
- Kitaoka, M. and Hayashi, K. (2002) Carbohydrate-processing phosphorolytic enzymes. Trends Glycosci. Glycotechnol. 14, 35-50. https://doi.org/10.4052/tigg.14.35
- Klaenhammer, T. R. (1993) Genetics of bacteriocins produced by lactic acid bacteria. FEMS Microbiol. Rev. 12, 39-85. https://doi.org/10.1111/j.1574-6976.1993.tb00012.x
- Krier, F., Revol-Junelles, A. M., and Germain. P. (1998) Influence of temperature and pH on production of two bacteriocins by Leuconostoc mesenteroides subsp. mesenteroides FR52 during batch fermentation. Appl. Microbiol. Biotechnol. 50, 359-363. https://doi.org/10.1007/s002530051304
- Leal-Sanchez, M. V., Jimenez-Diaz, R., Maldonado-Barragan, A., Garrido-Fernandez, A., and Ruiz-Barba, J. L. (2002) Optimization of bacteriocin production by batch fermentation of Lactobacillus plantarum LPCO10. Appl. Environ. Microbiol. 68, 4465-4471. https://doi.org/10.1128/AEM.68.9.4465-4471.2002
- Lee H. J. and Kim, W. J. (2010) Isolation and characterization of anti-listerial and amylase sensitive enterocin producing Enterococcus faecium DB1 from gajami-sikhae, A fermented flat fish in Korea. Food Sci. Biotechnol. 19, 373-381. https://doi.org/10.1007/s10068-010-0053-7
- Li, C., Bai, J., Cai, Z., and Ouyang, F. (2001) Optimization of a cultural medium for bacteriocin production by Lactococcus lactis response surface methodology. J. Biotechnol. 93, 27-34.
- Matsusaki, H., Endo, N., Sonomoto, K., and Ishizaki, A. (1996) Lantibiotic nisin Z fermentative production by Lactococcus lactis 10-1: relationship between production of the lantibiotic and lactate and cell growth. Appl. Microbiol. Biotechnol. 45, 36-40. https://doi.org/10.1007/s002530050645
- Oh, S., Rheem, S., Sim, J., Kim, S., and Baek, Y. (1995) Optimizing conditions for the growth of Lactobacillus casei YIT 9018 in tryptone-glucose medium by using response surface methodology. Appl. Environ. Microb. 61, 3809-3814.
- O'Sullivan, L., Ross, R. P., and Hill, C. (2002) Potential of bacteriocin producing lactic acid bacteria for improvements in food safety and quality. Biochimie. 84, 593-604. https://doi.org/10.1016/S0300-9084(02)01457-8
- Parente, E. and Ricciardi, A. (1994) Influence of pH on the production of enterocin 1146 during batch fermentation. Lett. Appl. Microbiol. 19, 12-15. https://doi.org/10.1111/j.1472-765X.1994.tb00891.x
- Piyushkumar, M., Kiran, D., and Lele, S. S. (2007) Application of response surface methodology to cell immobilization for the production of palatinose. Bioresource Technol. 98, 2892-2896. https://doi.org/10.1016/j.biortech.2006.09.046
- Reunanen, J. and Saris, P. E .J. (2009) Survival of nisin activity in intestinal environment. Biotechnol. Lett. 31, 1229-1232. https://doi.org/10.1007/s10529-009-9995-3
- Ross, R.P., Galvin, M., McAuliffe, O., Morgan, S. M., Ryan, M. P., Twomey, D. P., Meaney, and W. J., Hill, C. (1999) Developing applications for lactococcal bacteriocins. Antonie van Leeuwenhoek 76, 337-346. https://doi.org/10.1023/A:1002069416067
- Ruguo Ho (1999) Food product design. CRC Press, Boca Raton London New York Washington, DC. pp. 56-59.
- Sabia, C., Manicardi, G., Messi, P., de Niederhausern, S., and Bondi, M. (2002) Enterocin 416K1, an antilisterial bacteriocin produced by Enterococcus casseliflavus IM 416K1 isolated from Italian sausages. Int. J. Food Microbiol. 75, 163-170. https://doi.org/10.1016/S0168-1605(01)00741-3
- Senesi, S., Celandroni, F., Tavanti, A., and Ghelardi, E. (2001) Molecular characterization and identification of Bacillus clausii strains marketed for use in oral bacteriotherapy. Appl. Environ. Microb. 67, 834-839. https://doi.org/10.1128/AEM.67.2.834-839.2001
- Settanni, L. and Corsetti, A. (2008) Application of bacteriocins in vegetable food biopreservation. Int. J. Food Microbiol. 121, 123-138. https://doi.org/10.1016/j.ijfoodmicro.2007.09.001
- Steinmetz, M. (1993) Carbohydrate catabolism: pathways, enzymes, genetic regulation, and evolution. In: Bacillus subtilis and other Gram-positive bacteria: biochemistry, physiology and molecular genetics. Sonenshein, A. L. (ed) ASM, Washington, DC, pp. 157-170.
- Strobel, R. J. and Sullivan, G. R. (1999) Manual of industrial microbiology and biotechnology, 2nd ed, ASM Press, Washington, DC.
- Vignolo, G. M., Kairuz, M. N., Ruiz-Holgado, A. A. P., and Oliver, G. (1995) Influence of growth conditions on the production of lactocin 705, a bacteriocin produced by Lactobacillus casei CRL 705. J. Appl. Bacteriol. 78, 5-10. https://doi.org/10.1111/j.1365-2672.1995.tb01665.x
- Xiaojie, L., Guoqing, H., Qihe, C. (2003) Culture medium optimization for producing cellulose by Trichoderma koningii ZJ5. J. Zhejiang Univ. (-Sc. A). 5, 623-628.
Cited by
- Fermentation factors influencing the production of bacteriocins by lactic acid bacteria: a review vol.7, pp.47, 2017, https://doi.org/10.1039/C6RA24579J