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TERNARY UNIVERSAL SUMS OF GENERALIZED

PENTAGONAL NUMBERS

Byeong-Kweon Oh

Abstract. For an integer m ≥ 3, every integer of the form pm(x) =
(m−2)x2−(m−4)x

2
with x ∈ Z is said to be a generalized m-gonal number.

Let a ≤ b ≤ c and k be positive integers. The quadruple (k, a, b, c) is said

to be universal if for every nonnegative integer n there exist integers x, y, z
such that n = apk(x)+bpk(y)+cpk(z). Sun proved in [16] that, when k =
5 or k ≥ 7, there are only 20 candidates for universal quadruples, which he
listed explicitly and which all involve only the case of pentagonal numbers

(k = 5). He verified that six of the candidates are in fact universal
and conjectured that the remaining ones are as well. In a subsequent
paper [3], Ge and Sun established universality for all but seven of the

remaining candidates, leaving only (5, 1, 1, t) for t = 6, 8, 9, 10, (5, 1, 2, 8)
and (5, 1, 3, s) for s = 7, 8 as candidates. In this article, we prove that
the remaining seven quadruples given above are, in fact, universal.

1. Introduction

Let m be any positive integer greater than two. An integer of the form

pm(x) = (m−2)x2−(m−4)x
2 for some nonnegative integer x is said to be a polyg-

onal number of order m (or m-gonal number). If the variable x is an integer,
pm(x) is called a generalized polygonal number of order m (or generalized m-
gonal number). From the definition every m-gonal number is a generalized
m-gonal number and the converse is also true for m = 3 or 4. However if m is
greater than 4, the set of all m-gonal numbers is a proper subset of the set of
all generalized m-gonal numbers.

In 1638, Fermat asserted that every nonnegative integer can be written as a
sum of m polygonal numbers of order m. This was proved by Lagrange, Gauss
and Cauchy in the cases m = 4, m = 3 and m ≥ 5, respectively (see Chapter
1 of [9]).

The polygonal number theorem stated above was generalized in many direc-
tions. For example Lagrange’s four square theorem was generalized to find all
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quaternary quadratic forms that represent all nonnegative integers. Recently
Bhargava and Hanke in [2] finally completed this problem by proving, so called,
290-theorem, which is a generalization of the Conway and Schneeberger’s 15-
theorem (see [1]). Gauss’ triangular theorem was first generalized by Liouville.
To state the theorem more precisely we begin with defining the terminology
universality. Let a ≤ b ≤ c be positive integers. A ternary sum of polygonal
numbers api(x) + bpj(y) + cpk(z) is said to be universal over N if the equation
n = api(x) + bpj(y) + cpk(z) has a nonnegative integer solution x, y, z for any
nonnegative integer n. More generally if it has an integer solution x, y, z, it
is said to be universal over Z. The word “universal” in this paper refers to
“universal over Z”.

In 1862, Liouville determined all ternary universal sums of polygonal num-
bers in the case when i = j = k = 3. When i, j, k ∈ {3, 4}, this prob-
lem was done by Sun and his collaborators (see [4], [12] and [15]). Recently
Sun gave in [16] a complete list of candidates of all possible ternary univer-
sal sums of (generalized) polygonal numbers. In particular he proved that
there are at most 20 ternary universal sums over Z which are of the form
P k
a,b,c(x, y, z) = apk(x) + bpk(y) + cpk(z) for k = 5 or k ≥ 7, and conjectured

that these are all universal over Z. They are, in fact, k = 5 and

(a, b, c) = (1, 1, s) 1 ≤ s ≤ 10, s ̸= 7,
(1, 2, 2), (1, 2, 3), (1, 2, 4), (1, 2, 6), (1, 2, 8),
(1, 3, 3), (1, 3, 4), (1, 3, 6), (1, 3, 7), (1, 3, 8), (1, 3, 9).

Guy realized in [5] that P 5
1,1,1 is universal over Z (for the complete proof, see

[16]). In the same article [16] as above, Sun also proved the universality for the
cases when k = 5 and

(a, b, c) = (1, 1, 2), (1, 1, 4), (1, 2, 2), (1, 2, 4), (1, 1, 5), (1, 3, 6).

Note that the set of generalized hexagonal numbers is equal to the set of tri-
angular numbers. Shortly after publishing this result Ge and Sun proved in [3]
the universality for the cases when k = 5 and

(a, b, c) = (1, 1, 3), (1, 2, 3), (1, 2, 6), (1, 3, 3), (1, 3, 4), (1, 3, 9).

Therefore it remains seven candidates of ternary sums of pentagonal numbers
which are universal over Z.

In this article we prove that these remaining seven candidates are all uni-
versal over Z. One may easily show that P 5

1,b,c(x, y, z) = n has a solution over
Z if and only if

(1.1) (6x− 1)2 + b(6y − 1)2 + c(6z − 1)2 = 24n+ b+ c+ 1

has a solution over Z. If an integer w is relatively prime to 6, then w or −w is
congruent to −1 modulo 6. Therefore P 5

1,b,c is universal over Z if and only if
for every n ∈ N the ternary quadratic form

(1.2) x2 + by2 + cz2 = 24n+ b+ c+ 1
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has an integer solution x, y, z with gcd(xyz, 6) = 1. In many cases the problem
can be reduced to the problem of representations of ternary quadratic forms
without congruence condition on the solution. For example assume that gcd(b+
c+1, 6) = 1. Then the equation (1.1) has an integer solution if and only if the
equation

(1.3) x2 + b(x− 6y)2 + c(x− 6z)2 = 24n+ b+ c+ 1

has an integer solution. Under this situation we use the method on the rep-
resentations of ternary forms which is developed in [10]. It seems to be quite
a difficult problem to determine whether or not pka,b,c is universal over N for
k ≥ 5.

The term lattice will always refer to an integral Z-lattice on an n-dimensional
positive definite quadratic space over Q. The scale and the norm ideal of a
lattice L are denoted by s(L) and n(L) respectively. Let L = Zx1+Zx2+ · · ·+
Zxn be a Z-lattice of rank n. We write

L ≃ (B(xi, xj)).

The right hand side matrix is called a matrix presentation of L. If (B(xi, xj))
is diagonal, then we simply write L ≃ ⟨Q(x1), . . . , Q(xn)⟩.

Throughout this paper, we always assume that every Z-lattice L is positive
definite and is primitive in the sense that s(L) = Z.

For any Z-lattice L, Q(gen(L)) (Q(L)) denotes by the set of all integers
that are represented by the genus of L (L itself, respectively). In particular,
following Kaplansky we call an integer a eligible if a ∈ Q(gen(L)). For any
integer a, R(a, L) is denoted by the set of all vectors x ∈ L such that Q(x) = a
and r(a, L) = |R(a, L)|.

Any unexplained notations and terminologies can be found in [8] or [13].

2. General tools

For a positive integer d and a non-negative integer a, we define

Sd,a = {dn+ a | n ∈ Z+ ∪ {0}}.

A Z-lattice L is called Sd,a-universal if it represents every integer in the set Sd,a.
L is called Sd,a-regular if it represents every integer in Sd,a that is represented
by the genus of L, and at least one integer in Sd,a is represented by the genus
of L. Hence we have

L is Sd,a-universal if and only if Sd,a ⊂ Q(L)

and

L is Sd,a-regular if and only if ∅ ̸= Q(gen(L)) ∩ Sd,a ⊂ Q(L).

For the finiteness theorem of ternary Sd,a-universal and Sd,a-regular lattices,
see [11].



840 BYEONG-KWEON OH

Let M and N be ternary Z-lattices on the quadratic space V . For any
positive integer d and an integer a such that 0 ≤ a < d, we define

R(N, d, a) = {x ∈ N/dN : Q(x) ≡ a (mod d)}

and

R(M,N, d) = {σ ∈ O(V ) : σ(dN) ⊂ M}.
A coset (or, a vector in the coset) x ∈ R(N, d, a) is said to be good (with
respect to M,N, d and a) if there is σ ∈ R(M,N, d) such that σ(x̃) ∈ M
for any x̃ ∈ N satisfying x̃ ≡ x (mod d). The subset of all good vectors in
R(N, d, a) is denoted by RM (N, d, a). If R(N, d, a) = RM (N, d, a), then we
write

N ≺d,a M.

Note that if N ≺d,a M , then as stated in [10],

Sd,a ∩Q(N) ⊂ Q(M).

Note that the converse is not true in general. One may also easily show that

(i) if N is Sd,a-universal, so is M ;
(ii) if the assumption holds for anyN ∈ gen(M) and Sd,a∩Q(gen(M)) ̸= ∅,

then M is Sd,a-regular;
(iii) if M→ gen(N), Sd,a ∩Q(gen(M)) ̸= ∅, and N is Sd,a-regular, then so

is M .

Lemma 2.1. Let V be a ternary quadratic space. For an isometry σ ∈ O(V ),
define

Vσ = {x ∈ V : there is a positive integer k such that σk(x) = x}.

If σ has an infinite order, then Vσ is one dimensional subspace of V and σ(x) =
det(σ)x for any x ∈ Vσ.

Proof. If σk(x) = x and σs(y) = y for some s and y ̸∈ Qx, then the fixed space
of σks is two dimensional and hence σks is a reflection, and σ2ks = 1. This
contradicts the fact that σ has an infinite order. Note that every isometry σ
of a ternary quadratic space has an eigenvalue det(σ). □

Corollary 2.2. Under the same notations as above, assume that there is a par-
tition R(N, d, a)−RM (N, d, a) = P1∪· · ·∪Pk satisfying the following properties:
for each i = 1, . . . , k, there is τi ∈ O(V ) such that

(i) τi has an infinite order;
(ii) τi(dN) ⊂ N ;
(iii) τi(x) ∈ N and τi(x)(mod d) ∈ Pi ∪RM (N, d, a) for any x ∈ Pi.

Then we have

(Sd,a ∩Q(N))− ∪k
i=1Q(zi)Z2 ⊂ Q(M),

where the vector zi is a primitive vector in N which is an eigenvector of τi.
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Proof. Without loss of generality we may assume that k = 1. Assume that
Q(x) ≡ a (mod d) for x ∈ N . If x(mod d) ∈ RM (N, d, a), then Q(x) is repre-
sented by M . So we may assume that x(mod d) ∈ R(N, d, a) − RM (N, d, a).
Then τ1(x) ∈ N from the assumption. Hence if τ1(x)(mod d) ∈ RM (N, d, a),
then we are done, otherwise τ21 (x) ∈ N . Inductively we may assume that
τm1 (x) ̸∈ RM (N, d, a) for any positive integer m. Therefore if x is not an eigen-
vector of τ1, the set {τm1 (x) ∈ N : m ≥ 0} is an infinite set by Lemma 2.1.
This is a contradiction to the fact that the number of representations of any
integer by a ternary form is finite. □

Finding all ternary Z-lattices satisfying Q(gen(L)) = Q(L), which are called
regular lattices, has long and rich history. In 1997 Kaplansky and his collabo-
rators [7] provided a list of 913 candidates of primitive positive definite regular
ternary lattices up to equivalence and stated that there are no others. All
but 22 of the 913 candidates were verified to be regular in [7]. Recently the
author proved in [10] the regularity of eight ternary lattices among the remain-
ing 22 candidates. There are also some examples of ternary lattices satisfying
|Q(gen(L)) − Q(L)| = 1 (see, for example, [6]). However there are no known
examples of ternary lattices such that |Q(gen(L)) − Q(L)| ≥ 2 and for which
Q(L) is completely determined, although there are conditional results of this
type in the literature. For example, under the generalized Riemann hypothesis
for some Dirichlet L-functions, Ono and Soundararajan in [14] determined the
set of all integers represented by the Ramanujan’s ternary lattice ⟨1, 1, 10⟩. The
following theorem provides such an example without any assumption.

Every computation such as R(N, d, a) and RM (N, d, a) for some M,N, d and
a was done by the computer program MAPLE.

Theorem 2.3. For the ternary quadratic lattice M = ⟨1⟩ ⊥ ( 9 3
3 10 ),

Q(M) = Q(gen(M))− {2 · 22m, 5 · 22n : m,n ≥ 0}.

Proof. Note that h(M) = 3. Let a ∈ Q(gen(M)). First assume that a is divis-
ible by 3. Since M3 ≃ ⟨1, 1, 34⟩, a = 9b for a positive integer b. Furthermore
since b is represented by ⟨1, 1, 9⟩ ≃ ⟨1⟩ ⊥ ( 1 1

1 10 ), a = 9b is represented by
⟨9⟩ ⊥ ( 9 9

9 90 ), which is a subform of M . Therefore a is represented by M .
Assume that a ≡ 1 (mod 3). If we define L = ⟨1, 1, 9⟩, then

R(L, 3, 1) = {(0,±1, s), (±1, 0, t) : s, t ∈ F3},

and
0 1 0

1
3 0 −1

3
0 0 1

 ,

0 1 0
1
3 0 1

3
0 0 −1

 ,

1 0 0
0 −1

3
1
3

0 0 −1

 ,

1 0 0
0 1

3
1
3

0 0 −1

 ⊂ R(M,L, 3).

In fact |R(M,L, 3)| = 16, however we need only four given above. One may
easily show that R(L, 3, 1) = RM (L, 3, 1) and hence L ≺3,1 M . Since h(L) = 1,
a is represented by L and is also represented by M .
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Finally assume that a ≡ 2 (mod 3). Let N = ( 2 1
1 5 ) ⊥ ⟨9⟩. Note that the

class number of N is one and it represents a. In this case we have

R(N, 3, 2) = {(0,±1, s), (±1, 0, t), (±1,±2, u) : s, t, u ∈ F3}
and 

−1 1 0
1
3

2
3

1
3

0 0 −1

 ,

 1 −1 0
−1
3

−2
3

1
3

0 0 −1

 ⊂ R(M,N, 3).

Therefore we have

R(N, 3, 2)−RM (N, 3, 2) = {(±1, 0, 0), (0,±1, 0), (±1,±2, 0)}.
Let P1 = {(±1, 0, 0)}, P2 = {(0± 1, 0)} and P3 = {(±1,±2, 0)}, and

τ1 =
1

3

−3 −2 −2
0 1 4
0 −2 1

 , τ2 =
1

3

−2 0 5
1 3 −1
−1 0 −2

 , τ3 =
1

3

−2 −2 −5
1 −2 1
−1 −1 2

 .

Note that τ1 and τ2 satisfy all conditions in Corollary 2.2, however

τ3(x) ∈ RM (N, 3, 2) ∪ P2 for any x ∈ P3.

Hence we may still apply Corollary 2.2. Note that the primitive eigenvectors
for each τi for i = 1, 2 are (1, 0, 0) and (0, 1, 0), respectively. Therefore if a is
not of the form QM (±t, 0, 0) = 2t2 or QM (±t,∓t, 0) = Q(0,±t, 0) = 5t2, then
a is also represented by M . Furthermore even if a is one of those forms, a is
represented by M except only when r(a,N) ≤ 4. Assume that a = 2t2 or 5t2

for a positive integer t and there is an odd prime p ≥ 5 dividing t. Since

r(2p2, N) = 2p+ 2− 2

(
−2

p

)
, r(5p2, N) = 4p+ 4− 4

(
−2

p

)
, r(125, N) = 24

by Minkowski-Siegel formula, there is a representation which is not contained
in the eigenspace for both cases. Therefore a is represented by M if t has an
odd prime divisor. Finally M2 is anisotropic and 2, 5 is not represented by M .
Hence every integer of the form 2 · 22m or 5 · 22n is not represented by M . □

Lemma 2.4. Assume that a binary lattice L = ⟨1, k⟩ represents a positive
integer pN for an odd prime p not dividing k and a positive integer N . If L
represents p or r(p2, L) > 2 then there are positive integers x, y not divisible by
p such that x2 + ky2 = pN .

Proof. When L represents p, the proof was given by Jones in his unpublished
Ph. D. dissertation (see also [6]). Though the proof of the remaining case is
quite similar to this, we present the proof for the completeness. First define

Φp(L)={a : x2+ky2=a has an integer solution x, y such that gcd(xy, p)=1}.
Note that if a ∈ Φp(L), then at2 ∈ Φp(L) for any positive integer t not divisible
by p and ka ∈ Φp(L). Assume that S, T ∈ Φp(L) and ST ≡ 0 (mod p). Let

A2 + kB2 = S, C2 + kD2 = T and ABCD ̸≡ 0 (mod p).
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Then (AC ± kBD)2 + k(AD ∓ BC)2 = ST and at least one of AC + kBD or
AC − kBD is not divisible by p. Hence ST ∈ Φp(L).

Now from the assumption we know that p2 ∈ Φp(L), that is, there are
integers x, y such that x2 + ky2 = p2 with gcd(xy, p) = 1. Assume that A2 +
kB2 = pN and A ≡ B ≡ 0 (mod p). If one of A or B is zero, then clearly pN ∈
Φp(L). Assume that A = pma and B = pnb and ab ̸≡ 0 (mod p). Without loss
of generality we may assume that m ≥ n. Since (pm−na)2 + kb2 = p1−2nN ,

(pm−nax± kby)2 + k(pm−nay ∓ bx)2 = p3−2nN.

Now by choosing the sign suitably, we may assume that both terms in the
left hand side are not divisible by p. Hence p3−2nN ∈ Φp(L). Therefore

pN = p2(n−1)p3−2nN ∈ Φp(L). This completes the proof. □

3. Ternary universal sums of pentagonal numbers

In this section we prove that the remaining seven candidates of ternary sums
of pentagonal numbers are universal over Z.

(i) p5(x)+ p5(y)+6p5(z). First we show that for every eligible number k of
F (x, y, z) = 2x2+4y2+8z2+2xy+2yz, F (x, y, z) = k has an integral solution
(a, b, c) ∈ Z3 with a ̸≡ c (mod 2) unless k ≡ 0 (mod 4). Note that the class
number of F is 1 and hence F (x, y, z) = k has an integer solution. Suppose
that every solution (a, b, c) satisfies a ≡ c (mod 2). Then one may easily check
that if F (a, b, c) = k,

F

(
a− 2b− c

2
,
a+ 2b+ c

2
,−c

)
= k.

Hence if we let S = 1
2

(
1 −2 −1
1 2 1
0 0 −2

)
, which has an infinite order, Sm(a, b, c)t is also

an integer solution for any positive integer m. Therefore if (a, b, c) ̸= (t,−2t, 7t)
for any t ∈ Z, this is a contradiction by Corollary 2.2. Finally note that

F (t,−2t, 7t) = F (2t, 5t, 5t)

for any t ∈ Z. Hence if k ̸≡ 0 (mod 4), then such a solution exists always.
Now let (a, b, c) be an integer solution with a ̸≡ c (mod 2) of the equation

F (x, y, z) = 6n+2 for a nonnegative integer n. Note that every positive integer
of the form 6n+ 2 is an eligible integer of F . Let

d = a+ 5c, e = −b+ c, f = c.

Then 6n+ 2 = F (a, b, c) = 2d2 + 4e2 + 54f2 − 2de− 18df . Therefore

24n+ 8 = 4F (a, b, c) = 8d2 + 16e2 + 216f2 − 8de− 72df

= d2 + (d− 4e)2 + 6(d− 6f)2.

Since d is odd, the integers d, d−4e and d−6f are relatively prime to 6. There-
fore 24n+8 = x2+y2+6z2 has an integer solution (x, y, z) with gcd(xyz, 6) = 1.
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(ii) p5(x) + p5(y) + 8p5(z). Let

M =

4 2 2
2 5 1
2 1 10

 , N =

5 1 2
1 5 −2
2 −2 8

 .

Then we have R(N, 6, 5) − RM (N, 6, 5) = {(±2, 3, 0), (3,±2, 0)}. Let P1 =
{(±2, 3, 0)}, P2 = {(3,±2, 0}, and

τ1 =
1

6

−6 −4 −2
0 6 −6
0 4 2

 , τ2 =
1

6

−6 0 −6
4 6 −2
4 0 −2

 .

Then one may easily show that this information satisfies all conditions in the
Corollary 2.2 and the eigenvectors for each τi are z1 = (1, 0, 0) and z2 = (0, 1, 0).
Clearly Q(z1) = Q(z2) = 5 is represented by M . Consequently S6,5 ∩Q(N) ⊂
Q(M). Note that h(N) = 1, h(M) = 4 and every positive integer of the form
12n+5 is an eligible integer of N . ThereforeM represents every positive integer
of the form 12n+ 5. Now consider the following equation

24n+ 10 = x2 + (x− 6y)2 + 8(x− 2z)2

= 10x2 + 36y2 + 32z2 − 12xy − 32xz = f(x, y, z).

Since f is isometric to 2M , the above equation has an integer solution (x, y, z).
Since all of x, x− 6y, x− 2z are relatively prime to 6, the equation 24n+ 10 =
x2 + y2 + 8z2 has an integer solution (x, y, z) with gcd(xyz, 6) = 1.

(iii) p5(x) + p5(y) + 9p5(z). Note that every positive integer of the form
24n+11 is represented by ⟨1⟩ ⊥ ( 9 3

3 10 ) by Theorem 2.3. Therefore 24n+11 =
x2+(z−3y)2+9z2 has always an integer solution. Note that gcd(x(z−3y)z, 6) =
1.

(iv) p5(x)+p5(y)+10p5(z). Let M = ⟨1, 4, 5⟩ and N = ⟨1, 1, 20⟩. Then one
may easily show by computation that N ≺6,0 M . Since gen(M) = {M,N},
M represents every positive integer of the form 12n+ 6. Let a, b, c be integers
such that 12n+6 = a2+4b2+5c2. Clearly a and c are odd. Furthermore since
9 = 22 + 5 · 12, we may further assume that c is not divisible by 3 by Lemma
2.4. Now if x = a+ 2b, y = a− 2b and z = c, then

24n+ 12 = 2a2 + 8b2 + 10c2 = (a+ 2b)2 + (a− 2b)2 + 10c2 = x2 + y2 + 10z2.

Since exactly one of a and b is divisible by 3, gcd(xyz, 6) = 1.

(v) p5(x) + 2p5(y) + 8p5(z). Let

M =

1 0 0
0 8 4
0 4 10

 , N =

3 1 1
1 3 −1
1 −1 9

 , L =

1 0 0
0 10 2
0 2 58

 .

Note that gen(M) = {M,N} and S24,11 ⊂ Q(gen(M)). Since N ≺24,11 M ,
M represents every integer of the form 24n+ 11. Furthermore since M ≺24,11
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L, L also represents every positive integer of that form. Therefore for any
nonnegative integer n, there is an integer a, b, c such that

24n+ 11 = a2 + 10b2 + 4bc+ 58c2 = a2 + 2(b+ 5c)2 + 8(b− c)2.

If x = a, y = b + 5c, z = b − c, then one may easily show that 24n + 11 =
x2 + 2y2 + 8z2 and gcd(xyz, 6) = 1.

(vi) p5(x) + 3p5(y) + 7p5(z). Let

M =

1 0 0
0 3 0
0 0 7

 , N =

2 0 1
0 3 0
1 0 4

 , L =

4 1 0
1 7 0
0 0 7

 .

Note that gen(M) = {M,N} and S24,11 ⊂ Q(gen(M)). Since N ≺8,3 M , M
represents every positive integer of the form 24n+11. Computation shows that

R(M, 24, 11)−RL(M, 24, 11) = {(4a, 6b+3,±4a) ∈ (Z/24Z)3 : a ̸≡ 0 (mod 3)}.

By letting this set to P1 and τ = 1
8

(
1 0 21
0 8 0
−3 0 1

)
, we may apply Corollary 2.2.

Note that the eigenvector of τ is (0, 1, 0), which is not in R(N, 24, 11). Therefore
every positive integer of the form 24n + 11 is represented by L. Let a, b, c be
integers such that

24n+ 11 = 4a2 + 7b2 + 7c2 + 2ab = (a− 2b)2 + 3(a+ b)2 + 7c2.

Now let d = a−2b, e = a+b, f = c. Note that def ̸≡ 0 (mod 3). By comparing
both sides with modulo 8, we have

(d, e, f) ≡ (0, 1, 0), (1, 1, 1) or (0, 0, 1) (mod 2).

If all of d, e and f are odd, then there is an integer solution x, y, z such that
x2 + 3y2 + 7z2 = 24n + 11 with gcd(xyz, 6) = 1. Assume that d and e are all
even. If d = 2g, e = 2h, then clearly g ̸≡ h (mod 2). Furthermore

d2 + 3e2 + 7f2 = (g ± 3h)2 + 3(g ∓ h)2 + 7f2.

Note that at least one of g+h or g−h is not divisible by 3. Therefore there is an
integer solution x, y, z such that x2+3y2+7z2 = 24n+11 with gcd(xyz, 6) = 1.

Finally assume that d and f are all even. In this case d ≡ f (mod 4) and
gcd(e, 6) = 1. Let d = 2i and f = 2j and assume that i ≡ j ≡ 1 (mod 2).
Then

d2 + 3e2 + 7f2 =

(
3i± 7j

2

)2

+ 3e2 + 7

(
i∓ 3j

2

)2

.

Note that at least one of i−3j
2 and i+3j

2 is odd and both of them is not divisible
by 3. For the remaining case, that is i ≡ j ≡ 0 (mod 2), one may use the
following fact to reach the same consequence: since

4(A2 + 7B2) =

(
3A± 7B

2

)2

+ 7

(
A∓ 3B

2

)2

,
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there are odd integers α and β such that 4(A2 + 7B2) = α2 + 7β2 under the
assumption that A,B are all odd. If A ̸≡ B (mod 2), then there are odd
integers α′ and β′ such that 16(A2 + 7B2) = (α′)2 + 7(β′)2 (see also Lemma
3.5 of [16]).

(vii) p5(x)+3p5(y)+8p5(z). We first show that for any nonnegative integer
n, there are integers a, b, c such that

2n+1 = a2+b2+2c2, b ̸≡ c (mod 2), a+b ̸≡ c (mod 3) and b ̸≡ c (mod 3).

Note that 2n + 1 = a2 + b2 + 2c2 has always a solution (a, b, c) ∈ Z3. First
assume that n is even. Since ⟨1, 1, 8⟩ represents 2n + 1 in this case, we may
assume that b is odd and c is even. Since b2 + 2c2 ̸= 0, we may assume that b
or c is not divisible by 3 by Lemma 2.4. Therefore we may find integers a, b, c
satisfying all conditions given above by suitably choosing signs in the equation
2n + 1 = (±a)2 + (±b)2 + 2(±c)2. If n is odd, we may assume that b is even
and c is odd. Since the rest part of the proof is quite similar to the above, we
are left to the readers.

Now assume that a, b, c are integers satisfying the above conditions. If d =
a, e = a+ b+ 2c, f = c− a, then

24n+ 12 = 12(a2 + b2 + 2c2) = 12(d2 + (−3d+ e− 2f)2 + 2(d+ f)2)

= (e− 4d)2 + 3e2 + 8(e− 4d− 3f)2.

Note that

e+ f ≡ 1 (mod 2), e ̸≡ 0 (mod 3) and d− e ̸≡ 0 (mod 3).

Therefore if x = e− 4d, y = e, z = e− 4d− 3f , then 24n+12 = x2 +3y2 +8z2

and gcd(xyz, 6) = 1.
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