DOI QR코드

DOI QR Code

Electrical, Structural and Optical Characteristic Analysis of Al-doped ZnO Film Deposited by Atomic Layer Deposition

Atomic Layer Deposition으로 증착된 Al-doped ZnO Film의 전기적, 구조적 및 광학적 특성 분석

  • Lim, Jung-Soo (Department of Electronics Engineering, Chungnam National University) ;
  • Jeong, Kwang-Seok (Department of Electronics Engineering, Chungnam National University) ;
  • Shin, Hong-Sik (Department of Electronics Engineering, Chungnam National University) ;
  • Yun, Ho-Jin (Department of Electronics Engineering, Chungnam National University) ;
  • Yang, Seung-Dong (Department of Electronics Engineering, Chungnam National University) ;
  • Kim, Yu-Mi (Department of Electronics Engineering, Chungnam National University) ;
  • Lee, Hi-Deok (Department of Electronics Engineering, Chungnam National University) ;
  • Lee, Ga-Won (Department of Electronics Engineering, Chungnam National University)
  • 임정수 (충남대학교 전자전파정보통신공학과) ;
  • 정광석 (충남대학교 전자전파정보통신공학과) ;
  • 신홍식 (충남대학교 전자전파정보통신공학과) ;
  • 윤호진 (충남대학교 전자전파정보통신공학과) ;
  • 양승동 (충남대학교 전자전파정보통신공학과) ;
  • 김유미 (충남대학교 전자전파정보통신공학과) ;
  • 이희덕 (충남대학교 전자전파정보통신공학과) ;
  • 이가원 (충남대학교 전자전파정보통신공학과)
  • Received : 2011.02.22
  • Accepted : 2011.05.23
  • Published : 2011.06.01

Abstract

Al-doped ZnO film on glass substrate is deposited by ALD in low temperature, using 4-step process (DEZ-$H_2O$-TMA-$H_2O$). To find out the optimal film condition for TCO material, we fabricate Al-doped ZnO films by increasing Al doping concentration at $100^{\circ}C$, so that the Al-doped film of 5 at% shows the lowest resistivity ($1.057{\times}10^{-2}{\Omega}{\cdot}cm$) and the largest grain size (38.047 nm). Afterwards, the electrical and physical characteristics in Al-doped films of 5 at% are also compared in accordance with increasing deposition temperature. All the films show the optical transmittance over 80% and the film deposited at $250^{\circ}C$ demonstrates the superior resistivity ($1.237{\times}10^{-4}{\Omega}{\cdot}cm$).

Keywords

References

  1. J. N. Duenow, T. A. Gessert, D. M. Wood, T. M. Bames, M. Young, B. To, and T. J. Coutts, J. Vac. Sci. Technol., A25, 955 (2007).
  2. T. Minami, H. Nanto, and S. Takata, Jpn. J. Appl. Phy., 23, 280 (1984). https://doi.org/10.1143/JJAP.23.L280
  3. F. K Shan, G. X. Liu, W. J. Lee, and B. C. Shin, J. Appl. Phys., 101, 053106 (2007). https://doi.org/10.1063/1.2437122
  4. Y. G. Son, D. H. Hwang, and S. H. Cho, J. Korean Vacuum Society, 16, 235 (2007). https://doi.org/10.5757/JKVS.2007.16.4.235
  5. A. El Manouni, F. J. Manjon, M. Perales, M. Mollar, B. Mari, M. C. Lopez, and J. R. Ramos Barrado, Superlattices Microstruct., 42, 134 (2007). https://doi.org/10.1016/j.spmi.2007.04.005
  6. T. J. Couus, D. L. Young, X. Li, W. P. Mulligan, and X. Wu, J. Vac, Sci. Technol., A18, 2646 (2000).
  7. S. Bandyopadhyay, G. K. Paul, and S. K. Sen, Sol. Energ. Mat. Sol. C., 71, 103 (2002). https://doi.org/10.1016/S0927-0248(01)00047-2
  8. Y. Liu and J. Lian, Appl. Surf. Sci., 253, 3727 (2007). https://doi.org/10.1016/j.apsusc.2006.08.012
  9. W. Z. Xu, Z. Z. Ye, Y. J. Zeng, L. P. Zhu, B. H. Zhao, L. Jiang, J. G. Lu, H. P. He, and S. B. Zhang, Appl. Phys. Lett., 88, 173506 (2006). https://doi.org/10.1063/1.2199588
  10. I. S. Kim, S. H. Jeong, S. S. Kim, and B. T. Lee, Semicon. Sci. Technol., 19, 29 (2004).
  11. J. W. Elam and S. M. George, Chem. Mater., 15, 1020 (2003). https://doi.org/10.1021/cm020607+
  12. J. W. Elam, D. Routkevitch, and S. M. George, J. Electrochem. Soc., 150, 339 (2003). https://doi.org/10.1149/1.1569481
  13. J. W. Elam Z. A. Sechrist, and S. M. George, Thin Solid Films, 414, 43 (2002). https://doi.org/10.1016/S0040-6090(02)00427-3
  14. N. P. Dasgupta, S. Neubert, W. Y. lee, O. Trejo, J. R. Lee, and F. B. Prinz, Chem. Mater., 22, 4769 (2010). https://doi.org/10.1021/cm101227h
  15. P. Banerjee, W. J. Lee, K. R. Bea, S. B. Lee, and G. W. Rubloff, J. Appl. Phys., 108, 043504 (2010). https://doi.org/10.1063/1.3466987
  16. S. M. Kwon, S. H. Bang, S. J. Lee, S. Y. Jeon, W. H. Jeong, H. C. Kim, S. C. Gong, H. J. Chang, H. H.Park, and H. T. Jeon, Semicond. Sci. Technol., 24, 035015 (2009). https://doi.org/10.1088/0268-1242/24/3/035015
  17. H. D. Ko, W. P. Tai, K. C. Kim, and S. H. Kim, J. Cryst. Growth., 227, 352 (2005).

Cited by

  1. Experimental Study on Fabrication of AZO Transparent Electrode for Organic Solar Cell Using Selective Low-Temperature Atomic Layer Deposition vol.37, pp.6, 2013, https://doi.org/10.3795/KSME-B.2013.37.6.577