초록
하천 홍수해석 분야에서 가장 널리 이용되고 있는 1차원 동수역학 수치모형의 입력자료는 상하류단 경계조건, 조도계수, 하도단면 등이며, 계산 시간간격 및 거리간격의 선정은 계산결과의 정확성, 안정성, 효율성 확보를 위한 핵심 요소이다. 본 연구에서는 기존 단면간격 선정기법의 이론적 배경을 검토하였고, 매 시간단계별로 도출되는 흐름특성을 반영하여 계산거리간격을 추정하는 가변 계산거리간격 추정 기법을 제안하였다. 제안된 기법을 1차원 부정류 수치모형과 연계하여 Teton 댐 붕괴 및 한강 홍수 사상에 대해 적용함으로써 기존 고정 계산거리간격 추정 기법에 의한 해석결과와 비교하였다. 더 많은 내삽단면이 사용될 경우, 수치 수렴성 실험 결과는 수치해의 정확성과 안정성이 높아짐을 나타내었고, 본 연구에서 제안된 기법은 기존 고정 계산거리간격 추정기법보다 적은 단면개수로 동일한 정도의 정확도를 나타냄으로써 계산 효율성을 크게 향상시켰다. 본 연구에서 개발된 기법의 실무적용을 통해 정확성과 안정성뿐만 아니라 높은 효율성을 갖는 하천 홍수해석이 가능할 것으로 판단된다.
1-D hydrodynamic numerical models have been most widely used in the field of flood analysis. The model's input data are upstream/downstream boundaries, roughness coefficients, cross-sections, and so on, and computational distance step and time step are the most important factors in order to guarantee the computational accuracy, stability, and efficiency. In this study, a theoretical explanation is presented for the basis of the previous empirical selection criteria of cross-section's location; also, the estimation technique of computationally variable distance step is proposed to reflect the properties of flow at every computational time step. Combining this technique with 1-D unsteady numerical model, it was applied to two events of Teton dam failure flood and the Han River flood. The numerical experimental results demonstrate that the accuracy and stability is increased when used more interpolated cross-sections and show that the proposed technique of computationally variable distance step has the same order of accuracy with smaller numbers of cross-section than previous empirical selection criteria. The practical use of this technique will be possible to analyze the river floods with high efficiency as well as accuracy and stability.