DOI QR코드

DOI QR Code

Effect of NaCl on Hydrolytic Activity of Leucine Aminopeptidase from Bacillus sp. N2

Bacillus sp. N2 유래 leucine aminopeptidase의 가수분해활성에 대한 NaCl의 영향

  • Chung, Dong-Min (Bioindustrial Process Center, Jeonbuk Branch Institute, Korea Research Institute of Bioscience and Biotechnology) ;
  • Lee, Gang-Deog (Bioindustrial Process Center, Jeonbuk Branch Institute, Korea Research Institute of Bioscience and Biotechnology) ;
  • Chun, Sung-Sick (Department of Food Nutrition, International University of Korea) ;
  • Chung, Young-Chul (Department of Food Nutrition, International University of Korea) ;
  • Chun, Hyo-Kon (Bioindustrial Process Center, Jeonbuk Branch Institute, Korea Research Institute of Bioscience and Biotechnology)
  • 정동민 (한국생명공학연구원 전북분원 생물산업공정센터) ;
  • 이강덕 (한국생명공학연구원 전북분원 생물산업공정센터) ;
  • 전성식 (한국국제대학교 식품영양학과) ;
  • 정영철 (한국국제대학교 식품영양학과) ;
  • 전효곤 (한국생명공학연구원 전북분원 생물산업공정센터)
  • Received : 2011.03.04
  • Accepted : 2011.04.14
  • Published : 2011.05.30

Abstract

Salt stability of enzymes is a crucial practical factor in the food industry. Previously, leucine aminopeptidase (LAP) was purified from Bacillus sp. N2. Here, we present the salt effect of LAP using synthetic substrates. LAP had a hydrolytic activity for L-leucine-${\rho}$-nitroanilide in high concentrations of NaCl (up to 4 M), but not for other neutral salts (LiBr, LiCl, NaBr, KBr, and KCl). It hydrolyzed various synthetic di-peptide substrates with hydrophobic and hydrophilic amino acids at the C-terminal Xaa region, in the presence of 0-4 M NaCl. The result indicated that the hydrolytic action of LAP is not dependent on the hydrophobicity of the amino acid side chain at the scissile bond of the substrate. Remarkably, the hydrolytic activity of LAP was 1-3 folds higher than those of other LAPs and aminopeptidases in 4.5 M NaCl, suggesting that NaCl-tolerant LAP might be used in the food industry as cheese and anchovy sauce.

효소의 염에 대한 안정성은 식품산업 응용에 있어서 중요한 인자이다. 이전에, leucine aminopeptidase (LAP)은 Bacillus sp. N2에서 정제되었다. 본 연구에서는, LAP효소의 염 효과에 관한 연구를 수행했다. LAP은 고농도의 NaCl (4 M)에서 L-leucine-${\rho}$-nitroanilide의 가수분해활성을 가지고 있지만, 다른 중성 염들(LiBr, LiCl, NaBr, KBr, KCl)에서는 활성이 없었다. 그 효소는 0-4 M NaCl 농도에서 C-말단 Xaa쪽에 소수성 아미노산과 친수성 아미노산을 가진 여러 di-peptide 합성 기질들을 가수분해하였는데, 이러한 결과는 LAP의 가수분해성은 기질의 Scissile bond에 있는 아미노산 사이드 체인의 소수성과는 관련이 없다라는 것을 의미한다. 또한, LAP의 가수분해활성은 4.5 M NaCl 농도에서 다른 LAP와 Aminopeptidase의 활성 보다 1-3배가 높다라는 것을 보여주었다. 이러한 결과들은 NaCl에 내성을 지닌 LAP을 치즈와 멸치 젓갈과 같은 식품 산업에 응용될 수 있다는 것을 보여준다.

Keywords

References

  1. Cahan, R., E. Hetzroni, M. Nisnevitch, and Y. Nitzan. 2007. Purification and identification of a novel leucine amino-peptidase from Bacillus thuringiensis israelensis. Curr. Microbiol. 55, 413-419. https://doi.org/10.1007/s00284-007-9004-9
  2. Doi, E., D. Shibata, and T. Matoba. 1981. Modified colorimetric ninhydrin methods for peptidase assay. Anal. Biochem. 118, 173-184. https://doi.org/10.1016/0003-2697(81)90175-5
  3. Geoghegan, K. F., A. Galdes, and G. Hanson. 1986. Hydrolysis of peptides by carboxypeptidase A: equilibrium trapping of the ES2 intermediate. Biochem. 25, 4669-4674. https://doi.org/10.1021/bi00364a032
  4. Izawa, N., K. Tokuyasu, and K. Hayashi. 1997. Debittering of protein hydrolysates using Aeromonas caviae aminopeptidase. J. Agric. Food Chem. 45, 543-545. https://doi.org/10.1021/jf960784t
  5. Kim, H. O. and E. C. Y. Li-Chan. 2006. Quantitative structure-activity relationship study of bitter peptides. J. Agric. Food Chem. 54, 10102-10111. https://doi.org/10.1021/jf062422j
  6. Lee, G. D., S. S. Chun, Y. H. Kho, and H. K. Chun. 1998. Purification and properties of an extracellular leucine aminopeptidase from the Bacillus sp. N2. J. Appl. Microbiol. 85, 561-566. https://doi.org/10.1046/j.1365-2672.1998.853536.x
  7. Matsui, M., J. L. Flower, and L. L. Walling. 2010. Leucine aminopeptidases: diversity in structure and function. Biol. Chem. 387, 1535-1544.
  8. Morihara, K. and H. Tsuzuki. 1970. Thermolysin: kinetic study with oligopeptides. Eur. J. Biochem. 15, 374-380. https://doi.org/10.1111/j.1432-1033.1970.tb01018.x
  9. Nowak, J. and H. Tsai. 1988. The yeast aminopeptidase Y. Can. J. Microbiol. 34, 118-124. https://doi.org/10.1139/m88-024
  10. Prescott, J. M. and S. H. Wilkes. 1976. Aeromonas aminopeptidase. Methods Enzymol. 45, 530-543. https://doi.org/10.1016/S0076-6879(76)45047-4
  11. Spungin, A. and S. Blumberg. 1989. Streptomyces griseus aminopeptidase is a calcium activated zinc metalloprotein; Purification and properties of the enzyme. Eur. J. Biochem. 183, 471-47 https://doi.org/10.1111/j.1432-1033.1989.tb14952.x
  12. Tan, P. S. T., T. A. J. M. Van Kessel, and F. L. M. Van De Veerdonk. 1993. Degradation and debittering of a tryptic digest from beta-casein by aminopeptidase N from Lactococcus lactis subsp cremoris Wg2. Appl. Environ. Microbiol. 59, 1430-1436.
  13. Taylor, A. 1993. Aminopeptidase: towards a mechanism of action. Trends Biochem. Sci. 18, 167-172.
  14. Taylor, A. 1993. Aminopeptidases: structure and function. FASEB J. 7, 290-298.
  15. Umetsu, H., H. Matsuoka, and E. Ichisima. 1983. Debittering mechanism of bitter peptides from milk casein by wheat carboxypeptidase. J. Agric. Food Chem. 31, 50-53. https://doi.org/10.1021/jf00115a013
  16. Van Wart, H. E. and S. H. Lin. 1981. Metal binding stoichiometry and mechanisms of metal ion modulation of the activity of porcine kidney leucine aminopeptidase. Biochem. 20, 5682-5689. https://doi.org/10.1021/bi00523a007
  17. Zevaco, C., V. Monnet, and J. C. Gripoh. 1990. Intracellular X-propyl-dipeptyl peptidase from Lactococcus lactis ssp. Lactis: purification and properties. J. Appl. Bacteriol. 68, 357-366. https://doi.org/10.1111/j.1365-2672.1990.tb02886.x

Cited by

  1. Halotolerant aminopeptidase M29 from Mesorhizobium SEMIA 3007 with biotechnological potential and its impact on biofilm synthesis vol.7, pp.1, 2017, https://doi.org/10.1038/s41598-017-10932-8
  2. Fermentation Process for Odor Removal of Oyster (Crassostrea gigas) Hydrolysate and Its Properties vol.45, pp.4, 2016, https://doi.org/10.3746/jkfn.2016.45.4.542