DOI QR코드

DOI QR Code

Effects of Paprika Extract and Its Components on Cell Death and Expression of p53 and GADD45 Genes in Ultraviolet B- Exposed HaCaT Cells

UVB를 조사한 HaCaT 세포의 세포사멸과 p53 및 GADD45 유전자 발현에 대한 파프리카 추출물 및 성분들의 효과

  • Ha, Se-Eun (Division of Biological Science and Research Institute for Basic Science, Wonkwang University) ;
  • Kim, Hyung-Do (Division of Biological Science and Research Institute for Basic Science, Wonkwang University) ;
  • Kang, Jea-Ran (Division of Biological Science and Research Institute for Basic Science, Wonkwang University) ;
  • Park, Jong-Kun (Division of Biological Science and Research Institute for Basic Science, Wonkwang University)
  • Received : 2011.03.17
  • Accepted : 2011.05.19
  • Published : 2011.05.30

Abstract

In the present study, the effects of paprika extract and its components including vitamin C, lycopene and beta-carotene on cell death in ultraviolet B (UVB)-exposed HaCaT cells were investigated. The cell viability upon treatment for 24 hr with either paprika extract or vitamin C alone was similar to or greater than that of the untreated control. However, the viability of the cells treated with lycopene or beta-carotene decreased to about 20% of that in the untreated control. When UVB-exposed cells were post-incubated for 24 hr in medium containing paprika extract or vitamin C, cell viability increased in a concentration dependent manner as compared to those post-incubated in a normal growth medium. In contrast, post-incubation of UVB-exposed cells with lycopene or beta-carotene decreased cell viability in a concentration dependent manner as compared to those post-incubated in a normal growth medium. The nuclear fragmentation analysis showed that paprika extract or vitamin C decreases UVB-induced apoptosis. The apoptotic nuclear fragmentation resulting from UVB exposure was also protected by the paprika extract or vitamin C post-incubation. However, the UVB-induced apoptotic nuclear fragmentation of the cells treated with lycopene or beta-carotene increased in a concentration dependent manner. Western blot analysis showed that either paprika extract or vitamin C treatment alone did not significantly change the level of p53 and GADD45 protein. Interestingly, post-incubation of UVB-exposed cells with paprika extract or vitamin C decreased the p53 and GADD45 protein level as compared to those post-incubated in a normal growth medium. In contrast, incubation of UVB-exposed or non-irradiated cells with lycopene or beta-carotene increased the p53 and GADD45 protein levels in a concentration dependent manner as compared to those incubated in a normal growth medium. All these results suggest that paprika extract and vitamin C help the survival of the UVB-exposed cells, while lycopene and beta-carotene potentiate the apoptotic death of UVB-exposed cells, in accordance with the respective changes in p53 and GADD45 protein levels.

본 연구는 파프리카 추출물과 그 성분인 비타민 C, 라이코펜과 베타-카로틴이 UVB (ultraviolet-B)에 의한 유전독성의 감소에 효과를 보이는 지를 HaCaT 세포를 이용하여 분석하였다. 자외선을 조사하지 않은 정상 세포의 세포활성은 파프리카 추출물을 경우 처리하지 않은 대조군과 차이를 나타내지 않았지만 비타민 C의 경우 농도 의존적으로 증가시키는 것을 관찰하였다. 그러나 라이코펜과 베타-카로틴의 경우 농도 의존적으로 점차 세포활성이 감소하는 것으로 관찰되었다. UVB로 상해받은 세포를 추출물이나 그 성분으로 후 배양할 경우 정상 배양액으로 배양한 대조군에 비해 파프리카 추출물과 비타민C은 농도 의존적으로 세포 활성을 증가시켰으나 라이코펜과 베타-카로틴의 경우 농도 의존적으로 감소키는 것을 관찰할 수 있었다. 자외선을 조사하지 않은 정상 세포의 핵 분절율은 파프리카 추출물과 비타민 C의 경우 대조군과 유의적인 차이를 나타내지 않았지만, 라이코펜, 베타-카로틴의 경우 농도 의존적으로 핵 분절율이 증가하는 것을 관찰하였다. UVB를 조사한 후 파프리카 추출물이나 비타민 C를 처리한 경우 정상 배양액으로 배양한 대조군에 비해 핵 분절율을 감소시켰지만 라이코펜과 베타-카로틴의 경우 농도 의존적으로 증가시켰다. 세포 상해에 반응하는 유전자인 p53과 GADD45의 단백질 수준을 Western blot으로 분석한 결과, 파프리카 추출물만 처리했을 경우 p53과 GADD45 단백질 수준은 처리하지 않은 대조군과 비교해서 유의미한 차이를 나타내지 않았으나 UVB를 조사한 후 파프리카 추출물을 처리한 경우 농도 의존적으로 p53 단백질 발현량이 감소하였다. 비타민 C를 단독 처리할 경우 대조군에 비해 p53과 GADD45 단백질 발현량은 감소하였으며, UVB를 조사한 후 비타민 C를 처리한 경우에도 농도 의존적으로 p53과 GADD45 단백질 발현량이 감소하는 것을 확인할 수 있었다. 그러나 라이코펜과 베타-카로틴만 단독 처리할 경우 p53과 GADD45 단백질 발현량이 처리하지 않은 대조군에 비해 농도 의존적으로 증가하였다. UVB를 조사한 후 베타-카로틴을 처리한 경우에도 상대적인 고농도에서 p53과 GADD45 단백질 발현량이 증가하는 것을 확인할 수 있었다. 위의 결과를 토대로 파프리카 추출물과 비타민 C는 UVB에 의해 손상된 세포의 세포 독성을 회복하는 효능이 있다고 생각된다. 라이코펜과 베타-카로틴의 경우에는 UVB에 의해 발현된 p53 단백질의 수준이 농도 의존적으로 더욱 증가하는 것으로 보아 UVB에 의한 세포고사가 라이코펜과 베타-카로틴에 의해 강화되는 것으로 생각된다.

Keywords

References

  1. Ambach, W. and M. Blumthaler. 1993. Biological effectiveness of solar UV radiation in humans. Experientia 49, 747-753. https://doi.org/10.1007/BF01923543
  2. Baumeister, P., T. Huebner, M. Reiter, S. Schwenk-Zieger, and U. Harreus. 2009. Reduction of oxidative DNA fragmentation by ascorbic acid, zinc and N-acetylcysteine in nasal mucosa tissue cultures. Anticancer Res. 29, 4571-4574.
  3. Bevan, R. J., N. Mistry, P. R. Patel, E. P. Halligan, R. Dove, and J. Lunec. 2010. Can vitamin C induce nucleotide excision repair? Support from in vitro evidence. Br. J. Nutr. 103, 686-695. https://doi.org/10.1017/S0007114509992285
  4. Biacs, P. A., H. G. Daood, T. T. Huszka, and P. K. Biacs. 1993. Carotenoids and carotenoid esters from new cross cultivars of paprika. J. Agric. Food Chem. 41, 1864-1867. https://doi.org/10.1021/jf00035a011
  5. Bononi, M., F. Gallone, and F. Tateo. 2010. Validation data for HPLC/FLD determinations of ochratoxin A in red paprika and black pepper adopting a one-step clean-up procedure. Food Addit. Contam. Part A Chem. Anal. Control Expo. Risk Assess 27, 249-254. https://doi.org/10.1080/19440040903384182
  6. Burri, B. J. 1997. Beta-carotene and human health: a review of current research. Nutr. Res. 17, 547-580. https://doi.org/10.1016/S0271-5317(97)00011-0
  7. Carlisle, D. L., D. E. Pritchard, J. Singh, B. M. Owens, L. J. Blankenship, J. M. Orenstein, and S. R. Patierno. 2000. Apoptosis and p53 induction in human lung fibroblasts exposed to chromium (VI): effect of ascorbate and tocopherol. Toxicol. Sci. 55, 60-68. https://doi.org/10.1093/toxsci/55.1.60
  8. Choi, W. J., S. H. Youn, J. H. Back, S. Park, E. J. Park, K. J. Kim, H. R. Park, A. L. Kim, and K. H. Kim. 2011. The role of KLF4 in UVB-induced murine skin tumor development and its correlation with cyclin D1, p53, and p21(Waf1/Cip1) in epithelial tumors of the human skin. Arch Dermatol Res. 303, 191-200. https://doi.org/10.1007/s00403-010-1101-0
  9. Fisher, C. and J. A. Kocis. 1987. Separation of paprika pigment by HPLC. J. Agric. Food Chem. 35, 55-57. https://doi.org/10.1021/jf00073a012
  10. F’guyer, S., F. Afaq, and H. Mukhtar. 2003. Photochemoprevention of skin cancer by botanical agents. Photodermatol. Photoimmunol. Photomed. 19, 56-72. https://doi.org/10.1034/j.1600-0781.2003.00019.x
  11. Gambichler, T., C. Tigges, A. Dith, M. Skrygan, N. Scola, P. Altmeyer, and A. Kreuter. 2011. Impact of etanercept treatment on ultraviolet B-induced inflammation, cell cycle regulation and DNA damage. Br. J. Dermatol. 164, 110-115. https://doi.org/10.1111/j.1365-2133.2010.10099.x
  12. Granstein, R. D. and M. S. Matsui. 2004. UV radiation-induced immunosuppression and skin cancer. Cutis. 74, 4-9.
  13. Hahm, E., D. H. Jin, J. S. Kang, Y. I. Kim, S. W. Hong, S. K. Lee, H. N. Kim, D. J. Jung, J. E. Kim, D. H. Shin, Y. I. Hwang, Y. S. Kim D. Y. Hur, Y. Yang, D. Cho, M. S. Lee, and W. J. Lee. 2007. The molecular mechanisms of vitamin C on cell cycle regulation in B16F10 murine melanoma. J. Cell Biochem. 102, 1002-1010. https://doi.org/10.1002/jcb.21336
  14. Ha, S. E., D. H. Shin, H. D. Kim, S. M. Shim, H. S. Kim, B. H. Kim, J. S. Lee, and J. K. Park. 2010. Effects of ginsenoside Rg2 on the ultraviolet B-induced DNA damage responses in HaCaT cells. Naunyn Schmiedebergs Arch. Pharmacol. 382, 89-101. https://doi.org/10.1007/s00210-010-0522-9
  15. Heck, D. E., D. R. Gerecke, A. M. Vetrano, and J. D. Laskin. 2004. Solar ultraviolet radiation as a trigger of cell signal transduction. Toxicol. Appl. Pharmacol. 195, 288-297. https://doi.org/10.1016/j.taap.2003.09.028
  16. Ittah, Y., J. Kanner, and R. Granity. 1993. Hydrolysis study of carotenoid pirment paprika by HPLC/photodiode array detection. J. Agric. Food Chem. 41, 899-901. https://doi.org/10.1021/jf00030a012
  17. Kaack, K. and T. Austed. 1998. Interaction of vitamin C and flavonoids in elderberry (Sambucus nigra L.) during juice procession. Plant Foods Human Nutr. 52, 187-119. https://doi.org/10.1023/A:1008069422202
  18. Kadirvel, R., A. Muthuswany, S. Dmuel, and P. Chinnakannu. 2005. Ascorboic acid and $\alpha$-tocopherol as potent modulators of apoptosis on arsenic toxicity in rats. Toxicol. Lett. 156, 297-306. https://doi.org/10.1016/j.toxlet.2004.12.003
  19. Kang, E. S., K. Iwata, K. Ikami, S. A. Ham, H. J. Kim, K. C. Chang, J. H. Lee, J. H. Kim, S. B. Park, J. H. Kim, C. Yabe-Nishimura, and H. G. Seo. 2011. Aldose reductase in keratinocytes attenuates cellular apoptosis and senescence induced by UV radiation. Free Radic. Biol. Med. 50, 680-688. https://doi.org/10.1016/j.freeradbiomed.2010.12.021
  20. Kim, J. E., D. H. Jin, S. D. Lee, S. W. Hong, J. S. Shin, S. K. Lee, D. J. Jung, J. S. Kang, and W. J. Lee. 2008. Vitamin C inhibits p53-induced replicative senescence through suppression of ROS production and p38 MAPK activity. Int. J. Mol. Med. 22, 651-655.
  21. Knowles, L. M., D. A. Zigrossi, R. A. Tauber, C. Hightower, and J. A. Milner. 2000. Flavonoids suppress androgen-independent human prostate tumor proliferation. Nutr. Cancer 38, 116-122. https://doi.org/10.1207/S15327914NC381_16
  22. Matsumura, Y. and H. N. Ananthaswamy. 2004. Toxic effects of ultraviolet radiation on the skin. Toxicol. Appl. Pharmacol. 195, 298-308. https://doi.org/10.1016/j.taap.2003.08.019
  23. Millau, J. F., O. J. Bandele, J. Perron, N. Bastien, E. F. Bouchard, L. Gaudreau, D. A. Bell, and R. Drouin. 2010. Formation of stress-specific p53 binding patterns is influenced by chromatin but not by modulation of p53 binding affinity to response elements. Nucleic Acids Res. 39, 3053-3063.
  24. Liu, C., X. D. Wang, L. Mucci, J. M. Gaziano, and S. M. Zhang. 2009. Modulation of lung molecular biomarkers by beta-carotene in the physicians' health study. Cancer 115, 1049-58. https://doi.org/10.1002/cncr.24061
  25. Nahum, A., K. Hirsch, M. Danilenko, C. K. W. Watts, O. W. J. Prall, J. Levy, and Y. Sharoni. 2001. Lycopene inhibition of cell cycle progression in breast and endometrial cancer cells is associated with reduction in cyclin D levels and retention of p27Kip1 in the cyclin E cdk2 complexes. Oncogene 20, 3428-3436. https://doi.org/10.1038/sj.onc.1204452
  26. Liang, Y., S. Y. Lin, F. C. Brunicardi, J. Goss, and K. Li. 2008. DNA damage response pathways in tumor suppression and cancer treatment. World J. Surg. 33, 661-666.
  27. Livny, O., I. Kaplan, R. Reifen, S. Polak-Charcon, Z. Mader, and B. Schwartz. 2002. Lycopene inhibits proliferation and enhances gap-junction communication of KB-1 human oral tumor cells. J. Nutr. 132, 3754-3759.
  28. Palozza, P., R. Simone, A. Catalano, A. Boninsegna, V. Bohm, K. Frohlich, M. C. Mele, G. Monego, and F. O. Ranelletti. 2010. Lycopene prevents 7-ketocholesterol-induced oxidative stress, cell cycle arrest and apoptosis in human macrophages. J. Nutr. Biochem. 21, 34-46. https://doi.org/10.1016/j.jnutbio.2008.10.002
  29. Palozza, P., S. Serini, S. Verdecchia, M. Ameruso, S. Trombino, N. Picci, G. Monego, and F. O. Ranelletti. 2007. Redox regulation of 7-ketocholesterol-induced apoptosis by beta-carotene in human macrophages. Free Radical Biol. Med. 42, 1579-1590. https://doi.org/10.1016/j.freeradbiomed.2007.02.023
  30. Palozza, P., A. Sheriff, S. Serini, A. Boninsegna, N. Maggiano, F. O. Ranelletti, G. Calviello, and A. Cittadini. 2005. Lycopene induces apoptosis in immortalized fibroblasts exposed to tobacco smoke condensate through arresting cell cycle and down-regulating cyclin D1, pAKT and pBad. Apoptosis 10, 1445-1456. https://doi.org/10.1007/s10495-005-1393-2
  31. Palozza, P., S. Serini, F. Di Nicuolo, A. Boninsegna, A. Torsello, N. Maggiano, F. O. Wolf FI, G. Calviello, and A. Cittadini. 2004. Beta-carotene exacerbates DNA oxidative damage and modifies p53-related pathways of cell proliferation and apoptosis in cultured cells exposed to tobacco smoke condensate. Carcinogenesis 25, 1315-1325. https://doi.org/10.1093/carcin/bgh142
  32. Plessinger, M. A., J. R. Woods, and R. K. Miller. 2000. Pretreatment of human amnion-chorion with vitamins C and E prevents hypochlorous acid-induced damage. Am. J. Obstet. Gynecol. 183, 979-985. https://doi.org/10.1067/mob.2000.106676
  33. Saeed, R. W., T. Peng, and C. N. Metz. 2003. Ascorbic acid blocks the growth inhibitory effect of tumor necrosis factor-alpha on endothelial cells. Exp. Biol. Med. 228, 855-865.
  34. Powley, I. R., A. Kondrashov, L. A. Young, H. C. Dobbyn, K. Hill, I. G. Cannell, M. Stoneley, Y. W. Kong, J. A. Cotes, G. C. Smith, R. Wek, C. Hayes, T. W. Gant, K. A. Spriggs, M. Bushell, and A. E. Willis. 2009. Translational reprogramming following UVB irradiation is mediated by DNA-PKcs and allows selective recruitment to the polysomes of mRNAs encoding DNA repair enzymes. Genes Dev. 23, 1207-1220. https://doi.org/10.1101/gad.516509
  35. Shon, M. Y. and S. K. Park. 2006. Synergistic effect of Yuza (Citrus junos) extracts and ascorbic acid on antiproliferation of human cancer cells and antioxidant activity. Korean J. Food Preserv. 13, 649-654.
  36. Wu, F., K. Tyml, and J. X. Wilson. 2002. Ascorbate inhibits iNOS expression in endotoxin and IFN gamma-stimulated rat skeletal muscle endothelial cells. FEBS Lett. 520, 122-126. https://doi.org/10.1016/S0014-5793(02)02804-1
  37. Yu, M. H., H. J. Lee, H. G. Im, S. O. Lee, and I. S. Lee. 2006. Induction of quinone reductase activity in hepatoma cells by paprika (Capsicum annuum L.). Korean J. Food Sci. Technol. 35, 707-711.

Cited by

  1. Effects of Rubus coreanus and Artemisia princeps Extracts on the Ultraviolet B-Induced DNA Damage Responses in HaCaT Cells vol.24, pp.2, 2014, https://doi.org/10.5352/JLS.2014.24.2.112