DOI QR코드

DOI QR Code

유기용매내성 세균 Bacillus sp. BCNU 5005의 유용성에 대한 검증

Evaluation of the Potential of Organic Solvent Tolerant Bacillus sp. BCNU 5005

  • 최혜정 (창원대학교 생물공학협동과정) ;
  • 황민정 (창원대학교 생물학과) ;
  • 정영기 (동아대학교 생명공학과) ;
  • 주우홍 (창원대학교 생물공학협동과정)
  • Choi, Hye-Jung (Interdisciplinary Program in Biotechnology, Changwon National University) ;
  • Hwang, Min-Jung (Department of Biology, Changwon National University) ;
  • Jeong, Young-Kee (Department of Biotechnology, Dong-A University) ;
  • Joo, Woo-Hong (Interdisciplinary Program in Biotechnology, Changwon National University)
  • 투고 : 2011.02.04
  • 심사 : 2011.03.06
  • 발행 : 2011.05.30

초록

농화배양법을 이용하여 울산공단 일대의 폐수 및 토양에서 유기용매 내성 Bacillus sp. BCNU 5005를 분리하였다. 16S 리보좀DNA 염기서열 분석결과 BCNU 5005 균주는 B. subtilis와 98% 상동성을 가진 것으로 나타났으며 계통학적으로도 B. subtilis임이 확인되었다. 일반적으로 대부분의 세균과 그들의 효소는 고농도 유기용매하에서 불활성화되거나 파괴된다. 그러나. Bacillus sp. BCNU 5005의 lipase 활성은 chloroform, ethylbenzene 그리고 decane을 제외한 다양한 종류의 유기용매(25%, v/v)에서 매우 안정함을 보였다. 게다가 BCNU 5005는 유기용매를 분해하는 능력을 가진 것으로 확인하였다. 유기용매 내성 Bacillus sp. BCNU 5005는 생물전환과 생물복구산업을 위한 새로운 잠재적인 자원으로서 이용될 수 있다.

Using enrichment procedures, we isolated organic solvent-tolerant Bacillus sp. BCNU 5005 from waste water and soil in the Ulsan industrial plant region. BCNU 5005 had a maximum similarity of 98% with B. subtilis and was designated as B. subtilis based on phylogenetic analyses using 16S rDNA sequences. Generally, most bacteria and their enzymes are destroyed or inactivated in the presence of high concentrations of organic solvents. However, the lipase activity of B. subtilis BCNU 5005 was very stable in the presence of various kinds of solvents (25%, v/v) except chloroform, ethylbenzene and decane. Furthermore, BCNU 5005 was determined to have a degradative ability towards organic solvents. This organic solvent tolerant Bacillus sp. BCNU 5005 could be used as a new potential resource for biotransformation and bioremediation.

키워드

참고문헌

  1. Abe, A., A. Inoue, R. Usami, K. Moriya, and K. Horikoshi. 1995. Degration of polyaromatic hydrocarbons by organic solvent tolerant bacteria from Deep Sea. Biosci. Biotech. Biochem. 59, 1154-1156. https://doi.org/10.1271/bbb.59.1154
  2. Aono, R., M. Itoh, A. Inoue, and K. Horikoshi. 1992. Isolation of novel toluene-tolerant strain Pseudomonas aeruginosa. Biosci. Biotechnol. Biochem. 56, 145-146. https://doi.org/10.1271/bbb.56.145
  3. Bouchez, M., D. Blanchet, and J. P. Vandecasteele. 1996. The microbiological fate of polycyclic aromatic hydrocarbons: carbon and oxygen balances for bacterial degradation of model compounds. Appl. Microbiol. Biotechnol. 45, 556-561. https://doi.org/10.1007/BF00578471
  4. Cruden, D. L., J. H. Wolfram, R. D. Rogers, and D. T. Gibson. 1992. Physiological properties of a Pseudomonas strain which grows with p-xylene in two phase (organic-aqueous) medium. Appl. Environ. Microbiol. 58, 2723-2729.
  5. Dahiya, P., P. Arora, A. Chaudhury, S. Chand, and N. Dilbaghi. 2010. Charaterization of an extracellular alkaline lipase from Pseudomonas mendocina M-37. J. Basic Microbiol. 50, 420-426. https://doi.org/10.1002/jobm.200900377
  6. Fang, Y., Z. Lu, F. Lv, X. Bie, S. Liu, Z. Ding, and W. Xu. 2006. A newly isolated organic solvent tolerant Staphylococcus saprophyticus M36 produced organic solvent stable lipase. Curr. Microbiol. 53, 510-515. https://doi.org/10.1007/s00284-006-0260-x
  7. Gaur, R., A. Gupta, and S. K. Khare. 2008. Lipase from solvent tolerant Pseudomonas aeruginosa strain: production optimization by response surface methodology and application. Bioresour. Thehnol. 99, 4796-4802. https://doi.org/10.1016/j.biortech.2007.09.053
  8. Hasan, F., A. A. Shah, and A. Hameed. 2006. Industrial applications of microbial lipase. Enzyme Microb. Technol. 39, 235-251. https://doi.org/10.1016/j.enzmictec.2005.10.016
  9. Inoue, A. and K. Horikoshi. 1989. A Pseudomonas putida thrives in high cincentrations of toluene. Nature 338, 264-266. https://doi.org/10.1038/338264a0
  10. IWai, M. and Y. Tsujisaka. 1974. The purification and properites of three kinds of lipase from Rhizopus deleman. Arg. Biol. Chem. 38, 1241-1247. https://doi.org/10.1271/bbb1961.38.1241
  11. Jaeger, K. E., B. W. Dijkstra, and M. T. Reetz. 1999. Bacterial biocatalysts: molecular biology, three-dimensional structures and biotechnological applications of lipases. Annu. Rev. Microbiol. 53, 315-351. https://doi.org/10.1146/annurev.micro.53.1.315
  12. Jaeger, K. E. and T. Eggert. 2004. Enantioselective biocatalysis optimized by directed evolution. Curr. Opin. Chem. Biol. 15, 305-313.
  13. Ji, Q., S. Xiao, B. He, and X. Liu. 2010. Purification and characterization of an organic solvent-tolerant lipase from Pseudomonas aeruginosa LK1 and its application ofr biodiesel production. J. Mol. Catal. B: Enzyme. 66, 264-269. https://doi.org/10.1016/j.molcatb.2010.06.001
  14. Kanjanavas, P., S. Khuchareontaworn, P. Khawsak, A. Pakpitcharoen, K. Pothivejkul, S. Santiwatanakul, K. Matsui. T. Kajiwara, and K. Chansiri. 2010. Purification and characterization of organic solvent and detergent tolerant lipase from thermotolerant Bacillus sp. RN2. Int. J. Mol. Sci. 11, 3783-3792. https://doi.org/10.3390/ijms11103783
  15. Kawase, M. and A. Tanaka. 1989. Effects of chemical modification of amino acid residues on the activities of lipase from Candida cylindracea, Enzyme Microb. Technol. 11, 44-48. https://doi.org/10.1016/0141-0229(89)90112-9
  16. Kodera, Y., H. Nishumura, A. Matsushima, M. Hiroto, and Y. Inada. 1994. Lipase made active in hydrophobic media by coupling with polyethylene glycol. J. Am. Oil Chem. Soc. 71, 335-338. https://doi.org/10.1007/BF02638063
  17. Lee. S. K. and S. B. Lee. 2001. Isolation and characterization of a thermotolerant bacterium Ralstonia sp. strain PHS1 that degrades benzene, toluene, ethylbenzene, and o-xylene. Appl. Microbiol. Biotechnol. 61, 1-12.
  18. Locci, R. 1989. Streptomycetes and related genera, pp. 2451-2492, In Williams, S. T., M. E. Sharpe, and J. G. Holt (eds.). Bergey's Manual of systematic bacteriology, 9th, Vol. 4, Williams & Willikins, Baltimore.
  19. Ogino, H., K. Miyamoto, M. Yasuda, K. Ishimi, and H. Ishikawa. 1999. Growth of organic solvent-tolerant Pseudomonas aeruginosa LST-03 in the presence of various organic solvents and production of lipolytic enzyme in the presence of cyclohexane. Biochem. Eng. J. 4, 1-6. https://doi.org/10.1016/S1369-703X(99)00026-1
  20. Pandey, A., S. Benjamin, C. R. Soccol, P. Nigam, N. Krieger, and U. T. Soccol. 1999. The realm of microbial lipases in biotechnology. Biotechnol. Appl. Biochem. 29, 119-131.
  21. Pinkart, H. C., J. W. Wolfram, R. Rogers, and D. C. White. 1996. Cell envelope changes in solvent-tolerant and solvent sensitive Pseudomonas putida strains following exposure to o-xylene. Appl. Environ. Microbiol. 62, 1129-1132.
  22. Polizzi, K. M., A. S. Bommarius, J. M. Broering, and J. F. Chaparro-Riggers. 2007. Stability of biocatalysts. Curr. Opin. Chem. Biol. 11, 220-225. https://doi.org/10.1016/j.cbpa.2007.01.685
  23. Shaoxin, C., Q. Lilia, and S. Bingzhao. 2007. Purification and properties of enantioselective lipase from a newly isolated Bacillus cereus C71. Process Biochem. 42, 988-994. https://doi.org/10.1016/j.procbio.2007.03.010
  24. Sulong, M. R., R. N. Abdul Rahman, A. B. Salleh, and M. Basri. 2006. A novel organic solvent tolerant lipase from Bacillus sphaericus 205y: Extracellular expression of a novel OST-lipase gene. Pro. Exp. Puri. 49, 190-195. https://doi.org/10.1016/j.pep.2006.04.015
  25. Winkler, U. K., A Gupta, and M. Stuckmann. 1979. Glycoen, hyalurinate, and some other polysaccharides greatly enhance the formation of exolipase by Serratua narcescens. J. Bacteriol. 138, 663-670.
  26. Yamada, K. and H. Machida. 1962. Studies on the production of lipases by microorganisms, I/II., Nippon Nogei Kagaku Kaishi. 36, 858-864. https://doi.org/10.1271/nogeikagaku1924.36.858

피인용 문헌

  1. Potential of Organic Solvent Tolerant Bacillus sp. BCNU 5006 vol.27, pp.1, 2012, https://doi.org/10.7841/ksbbj.2012.27.1.061
  2. Solvent Tolerant Bacteria and Their Potential Use vol.25, pp.12, 2015, https://doi.org/10.5352/JLS.2015.25.12.1458