DOI QR코드

DOI QR Code

Determination of Optimal Added-Levels of Inuloprebiotics for Promotion of Growing Performance in Broiler Chickens

육계의 성장능력 향상을 위한 이눌로프리바이오틱스의 적정 첨가수준 결정

  • 박병성 (강원대학교 동물생명공학과)
  • Received : 2011.01.25
  • Accepted : 2011.05.23
  • Published : 2011.05.30

Abstract

The present study furthered this research by determining the optimal level of inuloprebiotics derived from Korean Jerusalem artichoke to promote growth in broiler chickens. On hatch day, 320 male Ross 308 broilers were randomly allotted to four groups for a 35-day feeding regimen. The groups were a control (no supplementation), diet supplementation with antibiotics (8 ppm avilamycin), supplementation with 200 ppm inuloprebiotics, and supplementation with 250 ppm inuloprebiotics. Body weight and feed intake were comparably high in the two inuloprebiotics groups, and exceeded the values for the control and antibiotics groups. Body weight and feed intake was higher in chickens fed the antibiotics supplemented diet, compared to controls. There were significant differences among treatment groups. Feed conversion ratio during total experimental periods was significantly high in the control group compared to the inuloprebiotics-fed groups, but no significant difference was evident using antibiotics or inuloprebiotics dietary supplementation. Carcass weight, dressing percentage, and weight of breast and thigh muscle were significantly higher for inuloprebiotics-fed chickens, compared with control and antibiotic-fed chickens. Inuloprebiotics concentration was not significant, while antibiotics-fed chickens displayed significantly higher values than control chickens. Abdominal fat was significantly reduced (19.08%-23.30%) and blood immunoglobulin and the weight of the thymus and Bursa of Fabricius were significantly increased in chickens receiving inuloprebiotics-supplemented feed, compared to control and antibiotics fed groups. In the lower intestine, the viable counts of beneficial bacteria (Bifidobacteria and Lactobacillus) were significantly increased and counts of harmful bacteria (Escherichia coli and Salmonella sp.) were significantly decreased in the presence of the inuloprebiotics, compared to control and antibiotic. The present results support 200 ppm as an optimal level of Korean Jerusalem artichoke-derived inuloprebiotics as a dietary supplement to improve growth in broiler chickens.

본 연구는 브로일러의 성장능력을 촉진하기 위한 사료 내 이눌로프리바이오틱스의 적정 첨가수준을 결정하기 위하여 수행하였다. 부화 당일 로스계통(Ross 308)의 브로일러 수컷 320수를 4개의 처리구로 완전임의배치하여 35일 동안 사육하였다. 실험처리구는 대조구(무첨가구), 항생제 첨가구(avilamycin 8 ppm), 이눌로프리바이오틱스 200 ppm 첨가구 및 이눌로프리바이오틱스 250 ppm 첨가구로 구분하였다. 브로일러의 체중과 사료섭취량은 두개의 이눌로프리바이오틱스 첨가구가 대조구, 항생제 첨가구 보다도 높았고, 항생제 첨가구는 대조구에 비해서 높았으며 통계적인 유의차가 인정되었다. 전체 실험기간 동안 사료요구율은 대조구가 이눌로프리바이오틱스 첨가구와 비교할 때 유의하게 높았으나 항생제 첨가구와 이눌로프리바이오틱스 첨가구 사이의 통계적인 유의차는 없었다. 도체중, 도체율, 가슴살, 다리살의 무게는 이눌로프리바이오틱스 첨가구가 대조구, 항생제 첨가구에 비해서 유의하게 높았고, 이눌로프리바이오틱스 200 ppm, 250 ppm 첨가구 사이의 차이는 없었으나 항생제 첨가구는 대조구에 비해서 유의하게 높았다. 복강지방은 이눌로프리바이오틱스 첨가구가 유의하게 감소(19.08~23.30%)하였으며 혈액 면역물질과 흉선, F낭의 무게는 이눌로프리바이오틱스 첨가구가 대조구와 항생제 첨가구에 비해서 유의하게 증가하였다. 장내 유익한 Bifidobacteria와 Lactobacillu는 이눌로프리바이오틱스 첨가구가 대조구와 항생제 첨가구에 비해서 유의하게 증가하였으나 유해한 E. coli와 Salmonella는 그 반대로 나타났으며 통계적인 유의차가 인정되었다. 본 연구는 브로일러의 성장능력 향상을 위한 사료 내 이눌로프리바이오틱스의 적정 첨가수준은 200 ppm에서 결정될 수 있음을 보여준다.

Keywords

References

  1. Bienenstock, J., J. Gauldie, and D. Y. E. Perey. 1973. Synthesis of IgG, IgA, IgM by chicken tissues: Immunofluorescent and 14C amino acid incorporation studies. J. Immun. 111, 1112-1118.
  2. Cetein, N., B. K. Guclu, and E. Cetein. 2005. The effect of prebiotics and mannan-oligosaccharide on some hematological and immunological parameters in turkey. J. Vet. Med. A. 52, 263-267. https://doi.org/10.1111/j.1439-0442.2005.00736.x
  3. Close, B., K. Banister, V. Baumans, E. M. Bernoth, N. Bromage, J. Bunyan, W. Erhardt, P. Flecknell, N. Gregory, H. Hackbarth, D. Morton, and C. Warwick. 1997. Recommendations for euthanasia of experimental animals, Part 2. Laboratory Animals 31, 1-32. https://doi.org/10.1258/002367797780600297
  4. Davidson, M. H., K. C. Maki, C. Specks, S. A. Too, and K. B. Crennan. 1998. Effects of dietary inulin on serum lipids in men and women with hypercholesterolemia. Nutr. Res. 18, 503-517. https://doi.org/10.1016/S0271-5317(98)00038-4
  5. Devaraj, S., S. Vega-Lopez, N. Kaul, F. Schonlau, P. Rohdewald, and I. Jialal. 2002. Supplementation with a pine bark extract rich in polyphenols increases plasma antioxidant capacity and alters the plasma lipoprotein profile. Lipids 37, 931-934. https://doi.org/10.1007/s11745-006-0982-3
  6. Dibner, J. J. and J. D. Richards. 2005. Antibiotic growth promoters in agriculture: History and mode of action. Poult. Sci. 84, 634-643. https://doi.org/10.1093/ps/84.4.634
  7. Dorotea, L. M. and D. N. M. Maris. 2005. Molecular properties and prebiotic effect of inulin obtained from artichoke (Cynara scolymus L.). Phytochemistry 66, 1476-1484. https://doi.org/10.1016/j.phytochem.2005.04.003
  8. Fiordaliso, M., N. Kok, J. P. Desager, F. Goethals, D. Deboyser, R. Marcel, and D. Nathalie. 1995. Dietary oligofructose lowers triglycerides, phospholipids and cholesterol in serum and very low density lipoproteins of rats. Lipids 30, 163-167. https://doi.org/10.1007/BF02538270
  9. French, A. D. 1989. Chemical and physical properties of fructans. Plant Physiol. 134, 125-136. https://doi.org/10.1016/S0176-1617(89)80044-6
  10. Gibson, G. R. and R. A. Rastall. 2006. Prebiotics: Development and application. John Wiley and Sons, Ltd., USA.
  11. Gibson, G. R. and X. Wang. 1994. Bifidogenic properties of different types of fructooligosaccharides. Food Microbiol. 11, 491-498. https://doi.org/10.1006/fmic.1994.1055
  12. Gibson, G. R., E. R. Bead, X. Wang, and J. H. Cummings. 1995. Selective stimulation of bifidobacteria in the human colon by oligofluctose and inulin. Gastroenterology 108, 975- 982. https://doi.org/10.1016/0016-5085(95)90192-2
  13. Gong, J., R. J. Forster, H. Yu., J. R. Chambers, P. M. Sabour, R. Wheatcroft, and S. Chen. 2002. Diversity and phylogenetic analysis of bacteria in the mucosa of chicken ceca and comparison with bacteria in the cecal lumen. FEMS Microbiol. Lett. 208, 1-7. https://doi.org/10.1111/j.1574-6968.2002.tb11051.x
  14. Hernandez, F., J. Madrid, V. Garcia, J. Orengo, and M. D. Megias. 2004. Influence of two plant extracts on broilers performance, digestibility, and digestive organ size. Poult. Sci. 83, 169-194. https://doi.org/10.1093/ps/83.2.169
  15. Higgins, D. A. 1975. Physical and chemical properties of fowl immunoglobulins. Vet. Bull. 45, 139-154.
  16. Kok, N., M. Roberfroid, A. Robert, and N. Delzenne. 1996. Involvement of lipogenesis in the lower VLDL secretion induced by oligofructose in rats. Br. J. Nutr. 76, 881-890. https://doi.org/10.1079/BJN19960094
  17. Modler, H. W., R. C. Mckellar, and M. Yaguchi. 1990. Bifidobacteria and bifidogenic factors. Can. Inst. Food. Sci. Technol. J. 23, 29-41. https://doi.org/10.1016/S0315-5463(90)70197-6
  18. Mockett, A. P. A. and M. E. Rose. 2007. Immune responses to eimeria: quantification of antibody isotypes to Eimeria tenella in chicken serum and bile by means of the ELISA. Parasite Immunol. 8, 481-489.
  19. Munoa, F. J. and R. Pares. 1988. Selective medium for isolation and enumeration of bifidobacterium SPP. Appl. Environ. Microbiol. 54, 1715-1718.
  20. National Research Council. 1994. Nutrients requirements of poultry. 9th rev. National Academy Press, Washington DC. USA.
  21. Park, S. O., J. H. Shin, W. K. Choi, and B. S. Park. 2010. Antibacterial activity of house fly-maggot extracts against MRSA(Methicillin-restante Staphylococcus aureus) and VRE(Vancomycin restrant enterococci). J. Environ. Biol. 31, 865-871.
  22. Park, B. S. 2008. Bifidogenic effects of inuloprebiotics in broiler chickens. J. Life. Sci. 18, 1693-1699. https://doi.org/10.5352/JLS.2008.18.12.1693
  23. Park, S. O. and B. S. Park. 2009. Effect of dietary inuloprebiotics on performance, serum immunoglobulin and caecal microflora in broiler chickens. Korean J. Organic Agric. 17, 539-555.
  24. Park, B. S. and D. H. Son. 2008. Feed composition for replacing antibiotic comprising inulin originated from jerusalem artichoke. WIPO Patent Application WO/2008/075878.
  25. Patterson, J. A. and K. M. Burkholder. 2003. Application of prebiotics and probiotics in poultry production. Poult. Sci. 82, 627-631. https://doi.org/10.1093/ps/82.4.627
  26. Rehman, H., P. Hellweg, D. Taras, and J. Zentek. 2008. Effects of dietary inulin on the intestinal short chain fatty acids and microbial ecology in broiler chickens as revealed by denaturing gradient gel electrophoresis. Poult. Sci. 87, 783-789. https://doi.org/10.3382/ps.2007-00271
  27. Rada, V., D. Duskova, M. Marounek, and J. Petr. 2001. Enrichment of Bifidobacteria in the hen caeca by dietary inulin. Folia Microbiol. 46, 73-75. https://doi.org/10.1007/BF02825891
  28. Rebolé, A., L. T. Ortiz, M. L. Rodríguez, C. Alzueta, J. Treviño, and S. Velasco. 2010. Effects of inulin and enzyme complex, individually or in combination, on growth performance, intestinal microflora, cecal fermentation characteristics, and jejunal histomorphology in broiler chickens fed a wheat- and barley-based diet. Poult. Sci. 89, 276-286. https://doi.org/10.3382/ps.2009-00336
  29. Rolfe, R. D. 2002. The role of probiotic cultures in the control of gastrointestinal health. J. Nutr. 130, 396S-402S.
  30. SAS. 2005. Statistical Analysis System. Institute Inc. JMP. Statistical Discovery. V. 6.0.
  31. Savage, T. F., P. F. Cotter, and E. I. Zakrzewska. 1996. The effect of feeding of a mannan oligosaccharide on immunoglobulin plasma IgG and bile IgA of Wrolstad MW male turkey. Poult. Sci. 75, 143.
  32. Scot PIL training manual. 1994. Glasgow Univ. UK.
  33. Shakibaie, M. R., K. A. Jalilzadeh, and S. M. Yamakanamardi. 2009. Horizontal transfer of antibiotic resistance gene among gram negative bacteria in sewage and lake water and influence of some physico-chemical parameters of water on conjugation process. J. Environ. Biol. 30, 45-49.
  34. Tako, E., R. P. Glahn, R. M. Welch, X. Lei, K. Yasuda, and D. D. Miller. 2008. Dietary inulin affects the expression of intestinal enterocyte iron transporters, receptors and storage protein and alters the microbiota in the pig intestine. Br. J. Nutr. 99, 472-480.
  35. Tizard, B. 2002. The avian antibody response. Seminars in Avian and Exotic Pet Medicine. 11, 2-14. https://doi.org/10.1053/saep.2002.28216
  36. Tokunaga, T., T. Oku, and N. Hosoya. 1986. Influence of chronic intake of new weetener fructooligosaccharide (Neosugar) on growth and gastrointestinal function of the rat. J. Nutr. Sci. Vitaminol. 32, 111-121. https://doi.org/10.3177/jnsv.32.111
  37. Velasco, S., L. T. Ortiz, C. Alzueta, A. Rebolé, J. Treviño, and M. L. Rodríguez. 2010. Effect of inulin supplementation and dietary fat source on performance, blood serum metabolites, liver lipids, abdominal fat deposition, and tissue fatty acid composition in broiler chickens. Poult. Sci. 89, 1651-1662. https://doi.org/10.3382/ps.2010-00687
  38. Wang, Y. W., C. J. Field, and J. S. Sim. 2000. Dietary polyunsaturated fatty acids alter lymphocyte subset proportion and proliferation, serum immunoglobulin G concentration, and immune tissue development in chicks. Poult. Sci. 79, 1742-1748.
  39. Xu, Z. R., C. H. Hu, M. S. Xia, X. A. Zhan, and M. Q. Wang. 2003. Effects of dietary fructooligosaccharide on digestive enzyme activies, intestinal microflora and morphology of male broilers. Poult. Sci. 82, 1030-1036. https://doi.org/10.1093/ps/82.6.1030
  40. Xu, Z. R., C. H. Hu, and M. O. Wang. 2002. Effects of fructooligosaccharide on conversion of L-tryptophan to skatole and indole by mixed populations of pig fecal bacteria. J. Gen. Appl. Microbiol. 48, 83-89. https://doi.org/10.2323/jgam.48.83
  41. Zhang, W. F., D. F. Li, W. Q. Lu, and G. F. Yi. 2003. Effects of isomalto-oilgosaccharides on roiler performance and intestinal microflora. Poult. Sci. 82, 657-663. https://doi.org/10.1093/ps/82.4.657

Cited by

  1. Application of Ecklonia cava Kjellman by-product as a feed additive: enhancing weight gain, immunity and protection from Salmonella infection in chickens vol.56, pp.4, 2016, https://doi.org/10.14405/kjvr.2016.56.4.255
  2. Effect of Feeding Cordyceps with Fly Pupa on Growth Performance in Broiler Chickens vol.21, pp.11, 2011, https://doi.org/10.5352/JLS.2011.21.11.1541