DOI QR코드

DOI QR Code

곰취(Ligularia fischeri), 미역취(Solidago virga-aurea), 삼나물(Aruncus dioicus) 복합 추출물의 항염증 효과

Anti-Inflammatory Effect of Ligularia fischeri, Solidago virga-aurea and Aruncus dioicus Complex Extracts in Raw 264.7 Cells

  • 김동희 (대구경북한방산업진흥원) ;
  • 안봉전 (대구한의대학교 화장품약리학과) ;
  • 김세기 (이지함 화장품) ;
  • 박태순 (대구경북한방산업진흥원) ;
  • 박근혜 (대구한의대학교 화장품약리학과) ;
  • 손준호 (대구경북한방산업진흥원)
  • Kim, Dong-Hee (Daegu Gyeongbuk Institute for Oriental Medicine Industry) ;
  • An, Bong-Jeun (Department of Cosmeceutical Science, Daegu Haany University) ;
  • Kim, Se-Gie (Leejiham Cosmetics Co. Ltd.) ;
  • Park, Tae-Soon (Daegu Gyeongbuk Institute for Oriental Medicine Industry) ;
  • Park, Gun-Hye (Department of Cosmeceutical Science, Daegu Haany University) ;
  • Son, Jun-Ho (Daegu Gyeongbuk Institute for Oriental Medicine Industry)
  • 투고 : 2011.01.19
  • 심사 : 2011.04.18
  • 발행 : 2011.05.30

초록

본 연구에서는 울릉도 특산 약용 작물 추출물이 항염증에 대한 실험연구가 이루어져 있지 않은 것에 착안하여 LPS에 의해 활성화된 대식세포로부터 유도되는 염증반응에 대한 억제효과를 조사하였다. 울릉도 자생 식물인 곰취, 미역취, 삼나물의 세가지 식물 추출물을 이용하여 피부 염증에 대하여 연구를 하였다. 산화질소와 cytokine의 생산은 면역세포의 대표적인 염증인자이다. 세포는 LPS 처리 후 한 시간 뒤에 곰취, 미역취, 삼나물 70% 아세톤 추출물을 처리를 하였다. 세포 독성이 나타나지 않는 농도인 1, 10, 100 ug/ml를 사용하였다. 곰취, 미역취, 삼나물 70% 아세톤 추출물은 NO, $PGE_2$, TNF-${\alpha}$, IL-1${\beta}$, IL-6, iNOS, COX-2의 생성을 저해 시켰다. $PGE_2$는 100 ug/ml의 농도에서 60%에 가까운 저해율을 나타내었다. iNOS와 COX-2 역시 100 ug/ml의 농도에서 각각 54%, 65%가 저해가 되었다. 게다가 곰취, 미역취, 삼나물 70% 아세톤 추출물은 염증성 사이토 카인인 TNF-${\alpha}$, IL-1${\beta}$, IL-6의 생성을 감소 시켰다. 이러한 결과로 곰취, 미역취, 삼나물 추출물은 염증 예방과 치료에 효과적임을 확인할 수 있었다.

The objective of this study was to evaluate the skin inflammation effects of three herb mixture extracts, Ligularia fischeri, Solidago virga-aurea and Aruncus dioicus, which are from Ullung island in Korea. Regulatory mechanisms of cytokines and nitric oxide (NO) are involved in the immunological activity of Raw 264.7 cells. Tested cells were pretreated with 70% acetone extracts of Ligularia fischeri, Solidago virga-aurea and Aruncus dioicus (LSA-A) and further cultured for an appropriated time after lipopolyssacharide (LPS) addition. During the entire experimental period, 1, 10, and 100 ${\mu}g/ml$ of LSA-A had no cytotoxicity. In these concentrations, LSA-A inhibited the production of NO and prostaglandin $E_2$ ($PGE_2$), tumor necorsis factor-a (TNF-a), interleukin-1${\beta}$ (IL-1${\beta}$), interleukin-6 (IL-6) expression of inducible NO synthase (iNOS), and cyclooxygenase-2 (COX-2). LSA-A showed a 60% $PGE_2$ inhibition rate at 100 ${\mu}g/ml$. iNOS and COX-2 inhibition activities were 54%, and 65% at 100 ${\mu}g/ml$, respectively. In addition, LSA-A extract reduced the release of inflammatory cytokines including TNF-a, IL-1${\beta}$ and IL-6. These results suggest that LSA-A may have significant effects on inflammatory factors, and may be a potential anti-inflammatory therapeutic agent.

키워드

참고문헌

  1. Delgado, A. V., A. T. McManus, and J. P. Chambers. 2003. Production of tumor necrosis factor-alpha, interleukin 1-beta, interleukin 2, and interleukin 6 by rat leukocyte subpopulations after exposure to substance P. Neuro. 37, 355-361.
  2. Funk, C. D., Frunk, L. B., Kennedy, M. E., A. S. Pong, and G. A. Fitzgerald. 1991. Human platelet/erythroleukemia cell prostaglandin G/H synthase: cDNA cloning, expression, and gene chromosomal assignment. FASEB J. 5, 2304-2312.
  3. Higuchi, M., N. Hisgahi, H. Taki, and T. Osawa. 1990. Cytolytic mechanisms of activated macrophages. Tumor necrosis factor and L-arginine-dependent mechanisms act synergistically as the major cytolytic mechanisms of activated macrophages. J. Immunol. 144, 1425-1431.
  4. Hume, D. A., C. A. Wells, and T. Ravasi. 2007. Transcriptional regulatory networks in macrophages. Novartis Found Symp. 281, 2-18.
  5. Hwang, B. Y., J. H. Lee, T. H. Koo, H. S. Kim, Y. S. Hong, J. S. Ro, K. S. Lee, and J. J. Lee. 2002. Furanoligularenone, an eremophilane form Ligularia fischeri, inhibits the LPS-induced production of nitric oxide and prostaglandin E2 in macrophage Raw264.7. Planta Med. 68, 101-105. https://doi.org/10.1055/s-2002-20250
  6. Kim, K. S. 2003. Inhibitory mechanism of a NF-kB (furanoligularenone) from ligularia fischeri. Master thesis. Chungnam national university. Taejon, Korea.
  7. Kim, J. Y., K. S. Jung, and H. G. Jeong. 2004. Suppressive effects of the kahweol and cafestol on cyclooxygenase-2 expression in macrophages. FEBS Lett. 569, 321-326. https://doi.org/10.1016/j.febslet.2004.05.070
  8. Kim, R. G., K. M. Shin, S. K., Chun, S. Y. Ji, S. H. Seo, H. J. Park, J. W. Choi, and K. T. Lee. 2002. In vitro antiinflammatory activity of the essential oil from ligularia fischeri var. spiciformis in murine macrophage RAW 264.7 cells. Yakhak Hoeji. 46, 343-347.
  9. Kim, T. J. 1997. Flower growing in the wild flower of Korean, pp. 38, Kunkil media. Seoul, Korea.
  10. Lee, A. K., S. H. Sung, Y. C. Kim, and S. G. Kim. 2003. Inhibition of lipopolysaccharide-inducible nitric oxide synthase, TNF-α and COX-2 expression by sauchinone effects on I-κBα phosphorylation, C/EBP and AP-1 activation. British J. Pharmacol. 139, 11-20. https://doi.org/10.1038/sj.bjp.0705231
  11. Lee, C. B. 2003. Coloured flora of Korea, pp. 515-516, Hyangmoonsa, Seoul.
  12. Lin, W. J. and W. C. Yeh. 2005. Implication of Toll-like receptor and tumor necrosis factor alpha signaling in septic shock. Shock 24, 206-9. https://doi.org/10.1097/01.shk.0000180074.69143.77
  13. McDaniel, M. L., G. Kwon, J. R. Hill, C. A. Marshall, and J. A. Corbett. 1996. Cytokines and nitric oxide in islet inflammation and diabetes. P. Soc. Exp. Biol. Med. 211, 24-32. https://doi.org/10.3181/00379727-211-43950D
  14. Moncada, S., R. M. Palmer, and E. A. Higgs. 1991. Nitric oxide: physiology, pathophysiology, and pharmacology Pharmacol. Rev. 43, 109-142.
  15. Mori, M. 2007. Regulation of nitric oxide synthesis and apoptosis by arginase and arginine recycling. J. Nutr. 137, 1616-1620.
  16. Nathan, C. 1992. Nitric oxide as a secretory product of mammalian cells. FASEB J. 6, 3051-3064.
  17. Nathan, C. and Q. W. Xie. 1994. Nitric oxide synthases: roles, tolls and controls. Cell 78, 915-918. https://doi.org/10.1016/0092-8674(94)90266-6
  18. Palmer, R. M., D. S. Ashton, and S. Moncada. 1988. Vascular endothelial cells synthesize nitric oxide from L-arginine. Nature 333, 664-666. https://doi.org/10.1038/333664a0
  19. Shin, J. W., S. I. Lee, M. H. Woo, and S. D. Kim. 2008. Effect of ethanol extracts of goat's beard on streptoxotocin induced diabetic symptoms and oxidative stress in rats. J. East Asian Soc. Dietary Life 18, 939-948.
  20. Tezuka, Y., S. Irikawa, T. Kaneko, A. H. Banskota, T. Nagaoka, Q. Xiong, K. Hase, and S. Kadota. 2001. Screening of chinese herbal drug extracts for inhibitory activity on nitric oxide production and identification of an active compound of zanthoxylum bugeanum. J. Ethnopharmacol. 77, 209-217. https://doi.org/10.1016/S0378-8741(01)00300-2
  21. Tizard, I. R. and R. M. Schubot. 2004. Veterinary immunology: An introduction. W. B. Saunders Company, U.S.
  22. Toshio, M., I. Yoshinori, and U. Akira. 1991. Studies on the constituents of solidago virga-aurea L. I. structural elucidation of saponins in the herb. Chem. Pharm. Bull. 39, 2037-2042. https://doi.org/10.1248/cpb.39.2037
  23. Weisz, A., L. Cicatiello, and H. Esumi. 1996. Regulation of the mouse inducible-type nitric oxide synthase gene promoter by interferon-$\gamma$, bacterial lipopolysaccharide and NG-monomethyl-L-arginine. Biochem. J. 316, 209-215.
  24. Willeaume, V., V. Kruys, T. Mijatovic, and G. Huez. 1995-1996 Tumor necrosis factor-alpha production induced by viruses and by lipopolysaccharides in macrophages: similarities and differences. J. Inflamm. 46, 1-12.
  25. Willoughby, D. A. 1975. Human arthritis applied to animal models. Towards a beter therapy. Annals of the rheumatic disease. Ann. Rheum. Dis. 34, 471-478. https://doi.org/10.1136/ard.34.6.471
  26. Yun, H. J., S. K. Heo, H. S. Yi, C. H. Kim, B. W. Kim, and S. D. Park. 2008. Anti-inflammatory effect of injinho-tang in RAW264.7 Cells. Korean J. Herbology 23, 169-178.

피인용 문헌

  1. Anti-inflammatory effects of flavonoids in Korean Chrysanthemum species via suppression of inducible nitric oxide synthase and cyclooxygenase-2 in LPS-induced RAW 264.7 macrophages vol.24, pp.3, 2015, https://doi.org/10.1007/s10068-015-0125-9
  2. Physicochemical Changes in Hemerocallis coreana Nakai After Blanching, Drying, and Fermentation vol.42, pp.10, 2013, https://doi.org/10.3746/jkfn.2013.42.10.1638
  3. Comparative Study of Native Flowers for Anti-oxidative Effects in Korea vol.26, pp.4, 2013, https://doi.org/10.7732/kjpr.2013.26.4.433
  4. Effects of β-Glucan on the Release of Nitric Oxide by Macrophages Stimulated with Lipopolysaccharide vol.29, pp.11, 2016, https://doi.org/10.5713/ajas.16.0418
  5. Antioxidant and anti-inflammatory activities of 3,5-dicaffeoylquinic acid isolated from Ligularia fischeri leaves vol.24, pp.1, 2015, https://doi.org/10.1007/s10068-015-0034-y
  6. Antimicrobial Activity on Respiration Diseases Inducing Bacteria and Antioxidant Activity of Water Extracts from Wild Edible Vegetables vol.27, pp.2, 2012, https://doi.org/10.7841/ksbbj.2012.27.2.114
  7. Antioxidant Activity of Goldenrod (Solidago virgaurea) Leaf and Stem Powder on Raw Ground Pork during Chilled Storage vol.33, pp.1, 2013, https://doi.org/10.5851/kosfa.2013.33.1.1
  8. Changes in Physicochemical Properties of Actinidia arguta (Siebold & Zucc.) Planch. ex Miq. by Blanching, Drying, and Fermentation vol.44, pp.3, 2015, https://doi.org/10.3746/jkfn.2015.44.3.425
  9. Anti-obesity Effects of Black Bean Chungkugjang Extract in 3T3-L1 Adipocytes and Obese Mice Induced by High Fat Diet vol.40, pp.9, 2011, https://doi.org/10.3746/jkfn.2011.40.9.1235
  10. Sensory Properties and Drivers of Liking Sanchae namul (seasoned dish with wild edible greens) vol.30, pp.2, 2014, https://doi.org/10.9724/kfcs.2014.30.2.200
  11. Anti-thrombosis Activity of the Aerial Part of Aruncus dioicus var kamtschaticus vol.24, pp.5, 2014, https://doi.org/10.5352/JLS.2014.24.5.515
  12. Anti-inflammatory Effect and Antioxidative Activities of Ingredients used in Bibimbab vol.23, pp.2, 2013, https://doi.org/10.5352/JLS.2013.23.2.213
  13. Anti-Atopic Effects of Mixed Extracts from Date Plum, Persimmon, and Mulberry Leaves vol.45, pp.4, 2016, https://doi.org/10.3746/jkfn.2016.45.4.501