DOI QR코드

DOI QR Code

Isolation and Characterization of a Calmodulin-binding Ca2+-ATPase 2 (SCA2) in Soybean

칼모듈린에 결합하는 대두 Ca2+-ATPase 2 (SCA2)의 분리 및 특성 분석

  • Park, Hyeong-Cheol (Division of Applied Life Science (BK21 Program), and Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University) ;
  • Kim, Ho-Soo (Division of Applied Life Science (BK21 Program), and Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University) ;
  • Lee, Sang-Min (Division of Applied Life Science (BK21 Program), and Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University) ;
  • Cho, Hyeon-Seol (Department of Physical Therapy, Gwangyang Health College) ;
  • Chung, Woo-Sik (Division of Applied Life Science (BK21 Program), and Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University)
  • 박형철 (경상대학교 대학원 응용생명과학부, 식물분자생물학 및 유전자조작 연구소) ;
  • 김호수 (경상대학교 대학원 응용생명과학부, 식물분자생물학 및 유전자조작 연구소) ;
  • 이상민 (경상대학교 대학원 응용생명과학부, 식물분자생물학 및 유전자조작 연구소) ;
  • 조현설 (광양보건대학 물리치료과) ;
  • 정우식 (경상대학교 대학원 응용생명과학부, 식물분자생물학 및 유전자조작 연구소)
  • Received : 2011.04.15
  • Accepted : 2011.05.13
  • Published : 2011.05.30

Abstract

We previously reported the isolation and characterization of a gene, SCA1 (for soybean $Ca^{2+}$-ATPase 1), encoding a calmodulin-regulated $Ca^{2+}$-ATPase that is located in the plasma membrane in soybean. Here, a $Ca^{2+}$-ATPase designated as SCA2 was isolated from soybean. The two $Ca^{2+}$-ATPases, SCA1 and SCA2, share a remarkably high degree of similarity (78%). Ten transmemebrane domains were predicted by hydropathy analysis. Using gel overlay assays, CaM was found to bind to SCA2 in a $Ca^{2+}$-dependent manner. Southern blot analysis revealed the presence of two copies of the $Ca^{2+}$-ATPase gene in the soybean genome. An N-terminal truncation mutant that deletes sequence through the putative calmodulin binding site was able to complement a yeast mutant (K616) that was deficient in two endogenous $Ca^{2+}$ pumps. Our results indicate that SCA2 is structurally highly conserved with type IIB $Ca^{2+}$ pumps in plants.

대두의 세포막에 존재하는 SCA1은 칼모듈린에 의해서 조절된다는 내용을 이전에 보고하였다. 본 연구에서는 대두의 $Ca^{2+}$-ATPase인 SCA2에 관한 특성을 연구하였다. SCA2는 SCA1과 아미노산 서열 비교에서 78%로 높은 유사성을 나타내며, 10개의 transmembrane 도메인이 존재하는 것을 확인하였다. CaM overaly assay로부터, SCA2는 칼슘에 의존적인 방법으로 칼모듈린과 결합한다는 것을 보여주었으며, Southern blot 분석 결과, 대두의 genome에는 두 종류의 $Ca^{2+}$-ATPase가 존재하는 것으로 보인다. SCA2의 $Ca^{2+}$-ATPase 효소활성을 확인하고자 yeast mutant를 이용하여 complementation assay를 수행해 보면, SCA2가 $Ca^{2+}$-ATPase의 효소활성을 가지는 것을 보여 주었다. 이러한 결과들은 SCA2가 식물에 존재하는 type IIB $Ca^{2+}$-ATPase들과 구조적으로 높은 유사성을 가진다는 것을 시사한다.

Keywords

References

  1. Baekgaard, L., A. T. Fuglsang, and M. G. Palmgren. 2005. Regulation of Plant Plasma Membrane $H^{+}$- and $Ca^{2+}$-ATPases by Terminal Domains. J. Bioenerg. Biomembr. 37, 369-374. https://doi.org/10.1007/s10863-005-9473-0
  2. Baekgaard, L., L. Luoni, M. I. De Michelis, and M. G. Palmgren. 2006. The plant plasma membrane $Ca^{2+}$ pump ACA8 contains overlapping as well as physically separated autoinhibitory and calmodulin-binding domains. J. Biol. Chem. 281, 1058-1065. https://doi.org/10.1074/jbc.M508299200
  3. Baxter, I., J. Tchieu, M. R. Sussman, M. Boutry, M. G. Palmgren, M. Gribskov, J. F. Harper, and K. B. Axelsen. 2003. Genomic Comparison of P-Type ATPase Ion Pumps in Arabidopsis and Rice. Plant Physiol. 132, 618-628. https://doi.org/10.1104/pp.103.021923
  4. Bolte, S., S. Brown, and B. Satiat-Jeunemaitre. 2004. The N-myristoylated Rab-GTPase m-Rabmc is involved in post-Golgi trafficking events to the lytic vacuole in plant cells. J. Cell Sci. 117, 943-954. https://doi.org/10.1242/jcs.00920
  5. Bonza, M. C., L. Luoni, and M. I. De Michelis. 2001. Stimulation of plant plasma membrane $Ca^{2+}$-ATPases activity by acidic phospholipids. Physiol. Plant 112, 315-320. https://doi.org/10.1034/j.1399-3054.2001.1120303.x
  6. Boonburapong, B. and T. Buaboocha. 2007. Genome-wide identification and analyses of the rice calmodulin and related potential calcium sensor proteins. BMC Plant Biol. 7, 4. https://doi.org/10.1186/1471-2229-7-4
  7. Brandl, C. J., N. M. Green, B. Korczak, and D. H. MacLennan. 1986. Two $Ca^{2+}$-ATPases genes: Homologies and mechanistic implications of deduced amino acid sequences. Cell 44, 597-607. https://doi.org/10.1016/0092-8674(86)90269-2
  8. Chung, W. S., S. H. Lee, J. C. Kim, W. D. Heo, M. C. Kim, C. Y. Park, H. C. Park, C. O. Lim, W. B. Kim, J. F. Harper, and M. J. Cho. 2000. Identification of a calmodulin-regulated soybean $Ca^{2+}$-ATPases (SCA1) that is located in the plasma membrane. Plant Cell 12, 1393-407.
  9. Cunningham, K. W. and G. R. Fink. 1994. Calcineurin-dependent growth control in Saccharomyces cerevisiae mutants lacking PMC1, a homolog of plasma membrane $Ca^{2+}$-ATPases. J. Cell Biol. 124, 351-363. https://doi.org/10.1083/jcb.124.3.351
  10. DeFalco, T. A., K. Y. Bender, and W. A. Snedden. 2010. Breaking the code: $Ca^{2+}$ sensors in plant signaling. Biochem. J. 425, 27-40. https://doi.org/10.1042/BJ20091147
  11. Di Leva, F., T. Domi, L. Fedrizzi, D. Lim, and E. Carafoli. 2008. The plasma membrane $Ca^{2+}$-ATPases of animal cells: Structure, function and regulation. Arch. Biochem. Biophys. 476, 65-74. https://doi.org/10.1016/j.abb.2008.02.026
  12. Elble, R. 1992. A simple and efficient procedure for transformation of yeasts. Biotechniques 13, 18-20.
  13. Feinberg, A. P. and B. Vogelstein. 1983. A technique for radiolabeling DNA restriction endomuclease fragments to high specific activity. Anal. Biochem. 132, 6-13. https://doi.org/10.1016/0003-2697(83)90418-9
  14. Geisler, M., K. B. Axelsen, J. F. Harper, and M. G. Palmgren. 2000. Molecular aspects of higher plant P-type $Ca^{2+}$-ATPases. Biochim. Biophys. Acta 1465, 52-78. https://doi.org/10.1016/S0005-2736(00)00131-0
  15. Horn, M. E., J. M. Widholm, and W. N. Ogren. 1989. Photoautotrophic growth of soybean cells in suspension culture. Plant Physiol. 72, 426-429.
  16. Kataoka, M., J. F. Head, T. Vorherr, J. Krebs, and E. Carafoli 1991. Small-angle x-ray scattering study of calmodulin bound to parts of the calmodulin-binding domain of the plasma membrane $Ca^{2+}$ pump. Biochemistry 30, 6247-6251. https://doi.org/10.1021/bi00239a024
  17. Kim, K., E. Chung, C. W. Cho, H. A. Soh, B. H. Yun, J. I. Kim, Y. W. Seo, S. W. Lee, Y. C. Lee, Y. S. Chung, and J. H. Lee. 2009. Cloning and characterization of SLTI98 encoding ribosomal protein S6 in soybean. Russ. J. Plant Physiol. 56, 118-125. https://doi.org/10.1134/S1021443709010178
  18. Lecourieux, D., R. Ranjeva, and A. Pugin. 2006. Calcium in plant defence-signalling pathways. New Phytol. 171, 249-269. https://doi.org/10.1111/j.1469-8137.2006.01777.x
  19. Lee, S. H., J. D. Johnson, M. P. Walsh, J. E. Van Lierop, C. Sutherland, A. Xu, W. A. Snedden, D. Kosk-Kosicka, H. Fromm, N. Narayanan, and M. J. Cho. 2000. Differential regulation of $Ca^{2+}$/calmodulin-dependent enzymes by plant calmodulin isoforms and free $Ca^{2+}$ concentration. Biochem. J. 350, 299-306. https://doi.org/10.1042/0264-6021:3500299
  20. Lee, S. H., J. C. Kim, M. S. Lee, W. D. Heo, H. Y. Seo, H. W. Yoon, J. C. Hong, S. Y. Lee, J. D. Bahk, I. Hwang, and M. J. Cho. 1995. Identification of a novel divergent calmodulin isoform from soybean which has differential ability to activate calmodulin-dependent enzymes. J. Biol. Chem. 270, 21806-21812. https://doi.org/10.1074/jbc.270.37.21806
  21. Lee, S. H., M. C. Kim, W. D. Heo, J. C. Kim, W. S. Chung, C. Y. Park, H. C. Park, Y. H. Cheong, C. Y. Kim, K. J. Lee, J. D. Bahk, S. Y. Lee, and M. J. Cho. 1999. Competitive binding of calmodulin isoforms to calmodulin-binding proteins: implication for the function of calmodulin isoforms in plants. Biochim. Biophys. Acta 1433, 56-67. https://doi.org/10.1016/S0167-4838(99)00149-1
  22. Lee, S. H., H. Y. Seo, J. C. Kim, W. D. Heo, W. S. Chung, K. J. Lee, M. C. Kim, Y. H. Cheong, J. Y. Choi, C. O. Lim, and M. J. Cho 1997. Differential activation of NAD kinase by plant calmodulin isoforms. The critical role of domain I. J. Biol. Chem. 272, 9252-9259. https://doi.org/10.1074/jbc.272.14.9252
  23. Liang, F., K. W. Cunningham, J. F. Harper, and H. Sze. 1997. ECA1 complements yeast mutants defective in $Ca^{2+}$ pumps and encodes an endoplasmic reticulum-type $Ca^{2+}$-ATPases in Arabidopsis thaliana. Proc. Natl. Acad. Sci. USA 94, 8579-8584. https://doi.org/10.1073/pnas.94.16.8579
  24. Malmstrom, S., P. Askerlund, and M. G. Palmgren. 1997. A calmodulin-stimulated $Ca^{2+}$-ATPases from plant vacuolar membranes with a putative regulatory domain at its N-terminus. FEBS Lett. 400, 324-328. https://doi.org/10.1016/S0014-5793(96)01448-2
  25. Meneghelli, S., T. Fusca, L. Luoni, and M. I. De Michelis. 2008. Dual mechanism of activation of plant plasma membrane $Ca^{2+}$-ATPases by acidic phospholipids: Evidence for a phospholipid binding site which overlaps the calmodulin- binding site. Mol. Membr. Biol. 25, 539-546. https://doi.org/10.1080/09687680802508747
  26. Rhoads, A. R. and F. Friedberg. 1997. Sequence motifs for calmodulin recognition. FASEB J. 11, 331-340.
  27. Sanders, D., J. Pelloux, C. Brownlee, and J. F. Harper. 2002. Calcium at the crossroads of signaling. Plant Cell 14, S401-S417.
  28. Snedden, W. A. and H. Fromm. 2001. Calmodulin as a versatile calcium signal transducer in plants. New Phytol. 151, 35-66. https://doi.org/10.1046/j.1469-8137.2001.00154.x
  29. Zielinski, R. E. 1998. Calmodulin and calmodulin-binding proteins in plants. Annu. Rev. Plant Physiol. Plant Mol. Biol. 49, 697-725. https://doi.org/10.1146/annurev.arplant.49.1.697
  30. Zielinski, R. E. 2002. Characterization of three new members of the Arabidopsis thaliana calmodulin gene family: conserved and highly diverged members of the gene family functionally complement a yeast calmodulin null. Planta 214, 446-455. https://doi.org/10.1007/s004250100636