DOI QR코드

DOI QR Code

Phosphodiesterase III Inhibitor Cilostazol Protects Amyloid β-Induced Neuronal Cell Injury via Peroxisome Proliferator-Activated Receptor-γ Activation

Amyloid β에 의해 유도된 신경세포 손상에 대한 phosphodiesterase III inhibitor인 cilostazol의 신경보호 효과

  • Park, Sun-Haeng (Division of Meridian and Structural Medicine, School of Korean Medicine, Pusan National University) ;
  • Kim, Ji-Hyun (Division of Meridian and Structural Medicine, School of Korean Medicine, Pusan National University) ;
  • Bae, Sun-Sik (Department of Pharmacology, School of Medicine, Pusan National University) ;
  • Hong, Ki-Whan (Department of Pharmacology, School of Medicine, Pusan National University) ;
  • Choi, Byung-Tae (Division of Meridian and Structural Medicine, School of Korean Medicine, Pusan National University) ;
  • Shin, Hwa-Kyoung (Division of Meridian and Structural Medicine, School of Korean Medicine, Pusan National University)
  • 박선행 (부산대학교 한의학전문대학원 경락구조의학부) ;
  • 김지현 (부산대학교 한의학전문대학원 경락구조의학부) ;
  • 배순식 (부산대학교 의학전문대학원 약리학교실) ;
  • 홍기환 (부산대학교 의학전문대학원 약리학교실) ;
  • 최병태 (부산대학교 한의학전문대학원 경락구조의학부) ;
  • 신화경 (부산대학교 한의학전문대학원 경락구조의학부)
  • Received : 2011.02.21
  • Accepted : 2011.03.09
  • Published : 2011.05.30

Abstract

The neurotoxicity of aggregated amyloid ${\beta}$ ($A{\beta}$) has been implicated as a critical cause in the pathogenesis of Alzheimer's disease (AD). It can cause neurotoxicity in AD by evoking a cascade of apoptosis to neuron. Here, we investigated the neuroprotective effects of cilostazol, which acts as a phosphodiesterase III inhibitor, on $A{\beta}_{25-35}$-induced cytotoxicity in mouse neuronal cells and cognitive decline in the C57BL/6J AD mouse model via peroxisome proliferator-activated receptor (PPAR)-${\gamma}$ activation. $A{\beta}_{25-35}$ significantly reduced cell viability and increased the number of apoptotic-like cells. Cilostazol treatment recovered cells from $A{\beta}$-induced cell death as well as rosiglitazone, a PPAR-${\gamma}$ activator. These effects were suppressed by GW9662, an antagonist of PPAR-${\gamma}$ activity, indicative of a PPAR-${\gamma}$-mediated signaling. In addition, cilostazol and rosiglitazone also restored PPAR-${\gamma}$ activity levels that had been altered as a result of $A{\beta}_{25-35}$ treatment, which were antagonized by GW9662. Furthermore, cilostazol also markedly decreased the number of apoptotic-like cells and decreased the Bax/Bcl-2 ratio. Intracerebroventricular injection of $A{\beta}_{25-35}$ in C57BL/6J mice resulted in impaired cognitive function. Oral administration of cilostazol (20 mg/kg) for 2 weeks before $A{\beta}_{25-35}$ injection and once a day for 4 weeks post-surgery almost completely prevented the $A{\beta}_{25-35}$-induced cognitive deficits, as did rosiglitazone. Taken together, our findings suggest that cilostazol could attenuate $A{\beta}_{25-35}$-induced neuronal cell injury and apoptosis as well as promote the survival of neuronal cells, subsequently improving cognitive decline in AD, partly because of PPAR-${\gamma}$ activation. The phosphodiesterase III inhibitor cilostazol may be the basis of a novel strategy for the therapy of AD.

Amyloid ${\beta}$ ($A{\beta}$)의 신경독성은 알츠하이머병의 주된 원인이 되고 이러한 신경독성은 일련의 신경세포 사멸반응에 의해 일어난다고 알려져 있다. 본 연구에서는 알츠하이머병의 실험모델로 mouse primary neuronal cell에 $A{\beta}_{25-35}$를 처리하여 세포독성을 유도하는 세포실험모델과 C57BL/6J mouse 뇌실에 $A{\beta}_{25-35}$를 주입하여 인지장애를 일으키는 동물실험모델을 이용하여 phosphodiesterase III 억제제인 cilostazol의 신경보호 효과에 대해 조사하였다. $A{\beta}_{25-35}$를 신경세포에 처리하면 세포생존율이 감소되었고, 세포사멸이 일어난 세포의 수도 증가되었다. 이러한 $A{\beta}_{25-35}$에 의한 세포독성이 cilostazol처리에 의해 회복되었으며, peroxisome proliferator-activated receptor(PPAR)-${\gamma}$ 항진제인 rosiglitazone 또한 동일한 회복효과를 나타내었다. Cilostazol과 rosiglitazone에 의한 이러한 회복효과가 PPAR-${\gamma}$ 길항제인 GW9662에 의해 다시 억제되는 결과를 통해 cilostazol의 효과는 PPAR-${\gamma}$가 매개하는 신호전달이 관여함을 알 수 있었다. 직접 PPAR-${\gamma}$ 활성화 정도를 측정한 결과, $A{\beta}_{25-35}$ 처리에 의해 감소된 PPAR-${\gamma}$ 활성화 정도가 cilostazol과 rosiglitazone에 의해 증가함을 관찰할 수 있었고, 이는 GW9662에 의해 다시 억제됨을 확인하였다. 게다가, cilostazol은 세포사멸이 일어난 세포의 수와 세포사멸 조절단백질인 Bax/Bcl-2의 비율도 감소시켰다. Cilostazol (20 mg/kg, 구강투여)을 C57BL/6J mice 뇌실에 $A{\beta}_{25-35}$를 주입하기 2주 동안 전처리하고, $A{\beta}_{25-35}$ 주입 후 4주 동안 처리하면, 기억력과 학습능력을 증진시킨다는 결과를 water maze 실험을 통해 알 수 있었으며, rosiglitazone (10 mg/kg)을 먹인 동물에서도 동일한 결과를 얻을 수 있었다. 본 연구를 통해서 cilostazol이 PPAR-${\gamma}$ 활성화를 통해 $A{\beta}_{25-35}$로 인한 신경세포 손상과 세포사멸을 약화시켜, 신경세포의 생존을 증진시키고, 알츠하이머에서 인지장애를 개선할 것으로 생각된다. 따라서, phosphodiesterase III 억제제인 cilostazol은 알츠하이머 질병 치료에 새로운 전략이 될 수 있을 것이다.

Keywords

References

  1. Agostinho, P., J. P. Lopes, Z. Velez, and C. R. Oliveira. 2008. Overactivation of calcineurin induced by amyloid-beta and prion proteins. Neurochem. Int. 52, 1226-1233. https://doi.org/10.1016/j.neuint.2008.01.005
  2. Arai, H. and T. Takahashi. 2009. A combination therapy of donepezil and cilostazol for patients with moderate Alzheimer disease: pilot follow-up study. Am. J. Geriatr. Psychiatry 17, 353-354. https://doi.org/10.1097/JGP.0b013e31819431ea
  3. Bermpohl, D., Z. You, E. H. Lo, H. H. Kim, and M. J. Whalen. 2007. TNF alpha and Fas mediate tissue damage and functional outcome after traumatic brain injury in mice. J. Cereb. Blood Flow Metab. 27, 1806-1818. https://doi.org/10.1038/sj.jcbfm.9600487
  4. Camacho, I. E., L. Serneels, K. Spittaels, P. Merchiers, D. Dominguez, and B. De Strooper. 2004. Peroxisome-proliferator- activated receptor gamma induces a clearance mechanism for the amyloid-beta peptide. J. Neurosci. 24, 10908-10917. https://doi.org/10.1523/JNEUROSCI.3987-04.2004
  5. Escribano, L., A. M. Simon, A. Perez-Mediavilla, P. Salazar-Colocho, J. Del Rio, and D. Frechilla. 2009. Rosiglitazone reverses memory decline and hippocampal glucocorticoid receptor down-regulation in an Alzheimer's disease mouse model. Biochem. Biophys. Res. Commun. 379, 406-410. https://doi.org/10.1016/j.bbrc.2008.12.071
  6. Hardy, J. 1997. Amyloid, the presenilins and Alzheimer's disease. Trends Neurosci. 20, 154-159. https://doi.org/10.1016/S0166-2236(96)01030-2
  7. Hardy, J. 2006. A hundred years of Alzheimer's disease research. Neuron 52, 3-13. https://doi.org/10.1016/j.neuron.2006.09.016
  8. Hardy, J. and D. J. Selkoe. 2002. The amyloid hypothesis of Alzheimer's disease: progress and problems on the road to therapeutics. Science 297, 353-356. https://doi.org/10.1126/science.1072994
  9. Harkany, T., T. Hortobagyi, M. Sasvari, C. Konya, B. Penke, P. G. Luiten, and C. Nyakas. 1999. Neuroprotective approaches in experimental models of beta-amyloid neurotoxicity: relevance to Alzheimer's disease. Prog. Neuropsychopharmacol. Biol. Psychiatry 23, 963-1008. https://doi.org/10.1016/S0278-5846(99)00058-5
  10. Heneka, M. T., M. Sastre, L. Dumitrescu-Ozimek, A. Hanke, I. Dewachter, C. Kuiperi, K. O'Banion, T. Klockgether, F. Van Leuven, and G. E. Landreth. 2005. Acute treatment with the PPARgamma agonist pioglitazone and ibuprofen reduces glial inflammation and Abeta1-42 levels in APPV717I transgenic mice. Brain 128, 1442-1453. https://doi.org/10.1093/brain/awh452
  11. Hensley, K., J. M. Carney, M. P. Mattson, M. Aksenova, M. Harris, J. F. Wu, R. A. Floyd, and D. A. Butterfield. 1994. A model for beta-amyloid aggregation and neurotoxicity based on free radical generation by the peptide: relevance to Alzheimer disease. Proc. Natl. Acad. Sci. USA 91, 3270-3274. https://doi.org/10.1073/pnas.91.8.3270
  12. Hong, K. W., J. H. Lee, K. Y. Kima, S. Y. Park, and W. S. Lee. 2006. Cilostazol: therapeutic potential against focal cerebral ischemic damage. Curr. Pharm. Des. 12, 565-573. https://doi.org/10.2174/138161206775474323
  13. Inestrosa, N. C., J. A. Godoy, R. A. Quintanilla, C. S. Koenig, and M. Bronfman. 2005. Peroxisome proliferator-activated receptor gamma is expressed in hippocampal neurons and its activation prevents beta-amyloid neurodegeneration: role of Wnt signaling. Exp. Cell Res. 304, 91-104. https://doi.org/10.1016/j.yexcr.2004.09.032
  14. Jang, J. H. and Y. J. Surh. 2002. beta-Amyloid induces oxidative DNA damage and cell death through activation of c-Jun N terminal kinase. Ann. N Y Acad. Sci. 973, 228-236. https://doi.org/10.1111/j.1749-6632.2002.tb04639.x
  15. Jiang, C., A. T. Ting, and B. Seed. 1998. PPAR-gamma agonists inhibit production of monocyte inflammatory cytokines. Nature 391, 82-86. https://doi.org/10.1038/34184
  16. Kaskie, B. and M. Storandt. 1995. Visuospatial deficit in dementia of the Alzheimer type. Arch. Neurol. 52, 422-425. https://doi.org/10.1001/archneur.1995.00540280120025
  17. Lazennec, G., L. Canaple, D. Saugy, and W. Wahli. 2000. Activation of peroxisome proliferator-activated receptors (PPARs) by their ligands and protein kinase A activators. Mol. Endocrinol. 14, 1962-1975. https://doi.org/10.1210/me.14.12.1962
  18. Lee, J. H., S. Y. Park, Y. W. Shin, K. W. Hong, C. D. Kim, S. M. Sung, K. Y. Kim, and W. S. Lee. 2006. Neuroprotection by cilostazol, a phosphodiesterase type 3 inhibitor, against apoptotic white matter changes in rat after chronic cerebral hypoperfusion. Brain Res. 1082, 182-191. https://doi.org/10.1016/j.brainres.2006.01.088
  19. Luna-Medina, R., M. Cortes-Canteli, M. Alonso, A. Santos, A. Martinez, and A. Perez-Castillo. 2005. Regulation of inflammatory response in neural cells in vitro by thiadiazolidinones derivatives through peroxisome proliferator-activated receptor gamma activation. J. Biol. Chem. 280, 21453-21462. https://doi.org/10.1074/jbc.M414390200
  20. Mogi, M., J. M. Li, K. Tsukuda, J. Iwanami, L. J. Min, A. Sakata, T. Fujita, M. Iwai, and M. Horiuchi. 2008. Telmisartan prevented cognitive decline partly due to PPAR-gamma activation. Biochem. Biophys. Res. Commun. 375, 446-449. https://doi.org/10.1016/j.bbrc.2008.08.032
  21. Nitta, A., A. Itoh, T. Hasegawa, and T. Nabeshima. 1994. beta-Amyloid protein-induced Alzheimer's disease animal model. Neurosci. Lett. 170, 63-66. https://doi.org/10.1016/0304-3940(94)90239-9
  22. Park, S. Y., J. H. Lee, K. Y. Kim, E. K. Kim, S. J. Yun, C. D. Kim, W. S. Lee, and K. W. Hong. 2008. Cilostazol increases 3T3-L1 preadipocyte differentiation with improved glucose uptake associated with activation of peroxisome proliferator-activated receptor-gamma transcription. Atherosclerosis 201, 258-265. https://doi.org/10.1016/j.atherosclerosis.2008.02.006
  23. Park, S. Y., H. K. Shin, J. H. Lee, C. D. Kim, W. S. Lee, B. Y. Rhim, and K. W. Hong. 2009. Cilostazol ameliorates metabolic abnormalities with suppression of proinflammatory markers in a db/db mouse model of type 2 diabetes via activation of peroxisome proliferator-activated receptor gamma transcription. J. Pharmacol. Exp. Ther. 329, 571-579. https://doi.org/10.1124/jpet.108.146456
  24. Pedersen, W. A., P. J. McMillan, J. J. Kulstad, J. B. Leverenz, S. Craft, and G. R. Haynatzki. 2006. Rosiglitazone attenuates learning and memory deficits in Tg2576 Alzheimer mice. Exp. Neurol. 199, 265-273. https://doi.org/10.1016/j.expneurol.2006.01.018
  25. Pike, C. J., A. J. Walencewicz-Wasserman, J. Kosmoski, D. H. Cribbs, C. G. Glabe, and C. W. Cotman. 1995. Structure-activity analyses of beta-amyloid peptides: contributions of the beta 25-35 region to aggregation and neurotoxicity. J. Neurochem. 64, 253-265.
  26. Risner, M. E., A. M. Saunders, J. F. Altman, G. C. Ormandy, S. Craft, I. M. Foley, M. E. Zvartau-Hind, D. A. Hosford, and A. D. Roses. 2006. Efficacy of rosiglitazone in a genetically defined population with mild-to-moderate Alzheimer's disease. Pharmacogenomics J. 6, 246-254.
  27. Rosen, E. D., P. Sarraf, A. E. Troy, G. Bradwin, K. Moore, D. S. Milstone, B. M. Spiegelman, and R. M. Mortensen. 1999. PPAR gamma is required for the differentiation of adipose tissue in vivo and in vitro. Mol. Cell 4, 611-617. https://doi.org/10.1016/S1097-2765(00)80211-7
  28. Selkoe, D. J. 2000. Toward a comprehensive theory for Alzheimer's disease. Hypothesis: Alzheimer's disease is caused by the cerebral accumulation and cytotoxicity of amyloid beta-protein. Ann. N Y Acad. Sci. 924, 17-25.
  29. Sung, S. M., D. S. Jung, C. H. Kwon, J. Y. Park, S. K. Kang, Y. K. Kim. 2007. Hypoxia/reoxygenation stimulates proliferation through PKC-dependent activation of ERK and Akt in mouse neural progenitor cells. Neurochem. Res. 32, 1932-1939. https://doi.org/10.1007/s11064-007-9390-1
  30. Takeda, S., N. Sato, K. Niisato, D. Takeuchi, H. Kurinami, M. Shinohara, H. Rakugi, M. Kano, and R. Morishita. 2009. Validation of Abeta1-40 administration into mouse cerebroventricles as an animal model for Alzheimer disease. Brain Res. 1280, 137-147. https://doi.org/10.1016/j.brainres.2009.05.035
  31. Troy, C. M., S. A. Rabacchi, Z. Xu, A. C. Maroney, T. J. Connors, M. L. Shelanski, and L. A. Greene. 2001. beta- Amyloid-induced neuronal apoptosis requires c-Jun N-terminal kinase activation. J. Neurochem. 77, 157-164. https://doi.org/10.1046/j.1471-4159.2001.t01-1-00218.x
  32. Watanabe, M., K. Inukai, H. Katagiri, T. Awata, Y. Oka, and S. Katayama. 2003. Regulation of PPAR gamma transcriptional activity in 3T3-L1 adipocytes. Biochem. Biophys. Res. Commun. 300, 429-436. https://doi.org/10.1016/S0006-291X(02)02860-7
  33. Watson, G. S., B. A. Cholerton, M. A. Reger, L. D. Baker, S. R. Plymate, S. Asthana, M. A. Fishel, J. J. Kulstad, P. S. Green, D. G. Cook, S. E. Kahn, M. L. Keeling, and S. Craft. 2005. Preserved cognition in patients with early Alzheimer disease and amnestic mild cognitive impairment during treatment with rosiglitazone: a preliminary study. Am. J. Geriatr. Psychiatry 13, 950-958.
  34. Yan, Q., J. Zhang, H. Liu, S. Babu-Khan, R. Vassar, A. L. Biere, M. Citron, and G. Landreth. 2003. Anti-inflammatory drug therapy alters beta-amyloid processing and deposition in an animal model of Alzheimer's disease. J. Neurosci. 23, 7504-7509.
  35. Yang, J., X. Liu, K. Bhalla, C. N. Kim, A. M. Ibrado, J. Cai, T. I. Peng, D. P. Jones, and X. Wang. 1999. Prevention of apoptosis by Bcl-2: release of cytochrome c from mitochondria blocked. Science 275, 1129-1132.
  36. Yankner, B. A., L. K. Duffy, and D. A. Kirschner. 1990. Neurotrophic and neurotoxic effects of amyloid beta protein: reversal by tachykinin neuropeptides. Science 250, 279-282. https://doi.org/10.1126/science.2218531
  37. Zhang, H. Y., Y. H. Liu, H. Q. Wang, J. H. Xu, and H. T. Hu. 2008. Puerarin protects PC12 cells against beta-amyloid- induced cell injury. Cell Biol. Int. 32, 1230-1237. https://doi.org/10.1016/j.cellbi.2008.07.006

Cited by

  1. Protective effect of the phosphodiesterase III inhibitor cilostazol on amyloid β-induced cognitive deficits associated with decreased amyloid β accumulation vol.408, pp.4, 2011, https://doi.org/10.1016/j.bbrc.2011.04.068