DOI QR코드

DOI QR Code

Analysis of Global Gene Expression Profile of Human Adipose Tissue Derived Mesenchymal Stem Cell Cultured with Cancer Cells

암세포주와 공동 배양된 인간 지방 조직 유래 중간엽 줄기 세포의 유전자 발현 분석

  • Kim, Jong-Myung (School of Medicine, Pusan National University) ;
  • Yu, Ji-Min (Department of Physiology, School of Medicine, Pusan National University) ;
  • Bae, Yong-Chan (Department of Plastic Surgery, School of Medicine, Pusan National University) ;
  • Jung, Jin-Sup (Department of Physiology, School of Medicine, Pusan National University)
  • 김종명 (부산대학교 의학전문대학원) ;
  • 유지민 (부산대학교 의학전문대학원) ;
  • 배용찬 (부산대학교 의학전문대학원) ;
  • 정진섭 (부산대학교 의학전문대학원)
  • Received : 2011.02.17
  • Accepted : 2011.03.15
  • Published : 2011.05.30

Abstract

Mesenchymal stem cells (MSC) are multipotent and can be isolated from diverse human tissues including bone marrow, fat, placenta, dental pulp, synovium, tonsil, and the thymus. They function as regulators of tissue homeostasis. Because of their various advantages such as plasticity, easy isolation and manipulation, chemotaxis to cancer, and immune regulatory function, MSCs have been considered to be a potent cell source for regenerative medicine, cancer treatment and other cell based therapy such as GVHD. However, relating to its supportive feature for surrounding cell and tissue, it has been frequently reported that MSCs accelerate tumor growth by modulating cancer microenvironment through promoting angiogenesis, secreting growth factors, and suppressing anti-tumorigenic immune reaction. Thus, clinical application of MSCs has been limited. To understand the underlying mechanism which modulates MSCs to function as tumor supportive cells, we co-cultured human adipose tissue derived mesenchymal stem cells (ASC) with cancer cell lines H460 and U87MG. Then, expression data of ASCs co-cultured with cancer cells and cultured alone were obtained via microarray. Comparative expression analysis was carried out using DAVID (Database for Annotation, Visualization and Integrated Discovery) and PANTHER (Protein ANalysis THrough Evolutionary Relationships) in divers aspects including biological process, molecular function, cellular component, protein class, disease, tissue expression, and signal pathway. We found that cancer cells alter the expression profile of MSCs to cancer associated fibroblast like cells by modulating its energy metabolism, stemness, cell structure components, and paracrine effect in a variety of levels. These findings will improve the clinical efficacy and safety of MSCs based cell therapy.

중간엽 줄기 세포는 다분화능을 가지고 있으며 골수, 지방, 태반, 치아속질, 윤활막, 편도 및 가슴샘 등 인체의 다양한 조직에서 분리된다. 중간엽 줄기세포는 조직의 항상성을 조절하며 다분화능, 분리와 조작의 용이함, 암세포로의 화학주성 및 면역 반응 조절 등의 특징을 가지고 있어서 재생 의학, 암 치료 및 식대주 질환(GVHD) 등에 이용할 수 있는 세포치료제로 주목 받고 있다. 하지만 주위 세포와 조직을 지지하고 조절하는 특징과 관련하여 중간엽 줄기세포가 혈관 생성을 촉진하고 성장인자를 분비하며 암세포를 공격하는 면역 반응을 억제함으로써 암의 진행을 촉진시킨다는 사실 또한 보고 되고 있다. 이러한 사실들로 인해 중간엽 줄기세포의 임상 적용이 제한되고 있다. 본 연구에서는 어떠한 기전을 통해서 중간엽 줄기세포가 암의 진행을 촉진하는 지지 세포로 기능하는지를 밝히기 위해서 인체 지방 조직에서 유래한 중간엽 줄기세포를 두 개의 암세포주(H460, U87MG)와 각각 공동 배양하고 microarray를 이용해서 암세포와 공동 배양되지 않은 중간엽 줄기세포와 유전자의 발현을 비교하였다. 두 암세포주와 공동배양에서 공통적으로 2배 이상 차이 나는 유전자를 DAVID (Database for Annotation, Visualization and Integrated Discovery)와 PANTHER (Protein ANalysis THrough Evolutionary Relationships)를 이용해 분석하였으며 생물학적 과정, 분자적 기능, 세포의 구성 성분, 단백질의 종류, 질병과 인체 조직 그리고 신호전달에 관련된 정보를 획득하였다. 이를 통해서 암세포는 중간엽 줄기세의 분화, 증식, 에너지 대사, 세포의 구조 및 분비기능을 조절하여 유전자의 발현 양상을 암 연관 섬유모세포(cancer associated fibroblast)와 유사한 세포로 변형 시킨다는 사실을 알 수 있었다. 본 연구의 결과는 중간엽 줄기세포를 이용한 임상 치료제의 효과와 안정성을 개선하는데 응용될 수 있을 것이다.

Keywords

References

  1. Alhadlaq, A. and J. J. Mao. 2004. Mesenchymal stem cells: isolation and therapeutics. Stem Cell Dev. 13, 436-448. https://doi.org/10.1089/scd.2004.13.436
  2. Bagley, R. G., W. Weber, C. Rouleau, M. Yao, N. Honma, S. Kataoka, I. Ishida, B. L. Roberts, and B. A. Teicher. 2009.Human mesenchymal stem cells from bone marrow express tumor endothelial and stromal markers. Int. J. Oncol. 34, 619-627.
  3. Bergfeld, S. A. and Y. A. DeClerck. 2010. Bone marrow-derived mesenchymal stem cells and the tumor microenvironment. Cancer Metastasis Rev. 29, 249-261. https://doi.org/10.1007/s10555-010-9222-7
  4. Blobe, G. C., P. S. William, and H. F. Lodish. 2002. Role of Transforming Growth Factor $\beta$ in Human Disease. N. Engl. J. Med. 342, 1350-1358.
  5. Casas-Tinto, S., M. Gomez-Velazquez, B. Granadino, and P. Fernandez-Funez. 2008. FoxK mediates TGF-beta signalling during midgut differentiation in flies. J. Cell Biol. 183, 1049-1060. https://doi.org/10.1083/jcb.200808149
  6. Chen, W., W. Jin, N. Hardegen, K. J. Lei, L. Li, N. Marinos, G. McGrady, and S. M. Wahl. 2003. Conversion of peripheral CD4+CD25- naive T cells to CD4+CD25+ regulatory T cells by TGF-beta induction of transcription factor Foxp3. J. Exp. Med. 198, 1875-1886. https://doi.org/10.1084/jem.20030152
  7. Chiarugi, V., L. Magnelli, and M. Cinelli. 1997. Complex interplay among apoptosis factors: RB, p53, E2F, TGF-beta, cell cycle inhibitors and the bcl2 gene family. Pharmacol. Res. 35, 257-261. https://doi.org/10.1006/phrs.1997.0140
  8. Chou, Y. T., H. Wang, Y. Chen, D. Danielpour, and Y. C. Yang. 2006. Cited2 modulates TGF-beta-mediated upregulation of MMP9. Oncogene 25, 5547-5560. https://doi.org/10.1038/sj.onc.1209552
  9. Colombo, M. P. and S. Piconese. 2007. Regulatory-T-cell inhibition versus depletion: the right choice in cancer immunotherapy. Nat. Rev. Cancer 7, 880-887. https://doi.org/10.1038/nrc2250
  10. Dennis, J. E. and P. Charbord. 2002. Origin and differentiation of human and murine stroma. Stem Cells 20, 205-214. https://doi.org/10.1634/stemcells.20-3-205
  11. Dreuw, A., H. M. Hermanns, R. Heise, S. Joussen, F. Rodríguez, Y. Marquardt, F. Jugert, H. F. Merk, P. C. Heinrich, and J. M. Baron. 2005. Interleukin-6-type cytokines upregulate expression of multidrug resistance-associated proteins in NHEK and dermal fibroblasts. J. Invest. Dermatol. 124, 28-37. https://doi.org/10.1111/j.0022-202X.2004.23499.x
  12. Dudley, A. C., S. C. Shih, A. R. Cliffe, K. Hida, and M. Klagsbrun. 2008. Attenuated p53 activation in tumour-associated stromal cells accompanies decreased sensitivity to etoposide and vincristine. Br. J. Cancer 99, 118-125. https://doi.org/10.1038/sj.bjc.6604465
  13. Erdogan, M., A. Pozzi, N. Bhowmick, H. L. Moses, and R. Zent. 2008. Transforming growth factor-beta (TGF-beta) and TGF-beta-associated kinase 1 are required for R-Ras-mediated transformation of mammary epithelial cells. Cancer Res. 68, 6224-6231. https://doi.org/10.1158/0008-5472.CAN-08-0513
  14. Franco, O. E., M. Jiang, D. W. Strand, J. Peacock, S. Fernandez, R. S. Jackson 2nd, M. P. Revelo, N. A. Bhowmick, and S. W. Hayward. 2011. Altered TGF-{beta} Signaling in a Subpopulation of Human Stromal Cells Promotes Prostatic Carcinogenesis. Cancer Res. [Epub ahead of print]
  15. Gerlo, S., G. Haegeman, and W. Vanden Berghe. 2008. Transcriptional regulation of autocrine IL-6 expression in multiple myeloma cells. Cell Signal. 20, 1489-1496. https://doi.org/10.1016/j.cellsig.2008.04.004
  16. Giannelli, G. and S. Antonaci. 2000. Biological and clinical relevance of Laminin-5 in cancer. Clin. Exp. Metastasis. 18, 439-443. https://doi.org/10.1023/A:1011879900554
  17. Guo, S., M. Liu, and R. R. Gonzalez-Perez. 2010. Role of Notch and its oncogenic signaling crosstalk in breast cancer. Biochim. Biophys. Acta. 1815, 197-213.
  18. Huang, da. W., B. T. Sherman, and R. A. Lempicki. 2009. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat. Protoc. 4, 44-57.
  19. Imamura, T., T. Manabe, G. Ohshio, Z. H. Wang, K. Yamaki, T. Yoshimura, H. Suwa, and M. Imamura. 1995. Immunohistochemical staining for type IV collagen and laminin in the stroma of human pancreatic cancer. Int. J. Pancreatol. 18, 95-99.
  20. Kayamori, K., K. Sakamoto, T. Nakashima, H. Takayanagi, K. Morita, K. Omura, S. T. Nguyen, Y. Miki, T. Iimura, A. Himeno, T. Akashi, H. Yamada-Okabe, E. Ogata, and A. Yamaguchi. 2010. Roles of interleukin-6 and parathyroid hormone-related peptide in osteoclast formation associated with oral cancers: significance of interleukin-6 synthesized by stromal cells in response to cancer cells. Am. J. Pathol. 176, 968-980. https://doi.org/10.2353/ajpath.2010.090299
  21. Kebriaei, P. and S. Robinson. 2011. Treatment of graft-versus- host-disease with mesenchymal stromal cells. Cytotherapy [Epub ahead of print].
  22. Khakoo, A. Y., S. Pati, S. A. Anderson, W. Reid, M. F. Elshal, I. I. Rovira, A. T. Nguyen, D. Malide, C. A. Combs, G. Hall, J. Zhang, M. Raffeld, T. B. Rogers, W. Stetler-Stevenson, J. A. Frank, M. Reitz, and T. Finkel. 2006. Human mesenchymal stem cells exert potent antitumorigenic effects in a model of Kaposi's sarcoma. J. Exp. Med. 203, 1235-1247. https://doi.org/10.1084/jem.20051921
  23. Kim, B. G., H. J. An, S. Kang, Y. P. Choi, M. Q. Gao, H. Park, and N. H. Cho. 2011. Laminin-332-rich tumor microenvironment for tumor invasion in the interface zone of breast cancer. Am. J. Pathol. 178, 373-381. https://doi.org/10.1016/j.ajpath.2010.11.028
  24. Lee, G. and M. Piquette-Miller. 2001. Influence of IL-6 on MDR and MRP-mediated multidrug resistance in human hepatoma cells. Can. J. Physiol. Pharmacol. 79, 876-884. https://doi.org/10.1139/y01-071
  25. Lee, M. Y., J. M. Ryu, S. H. Lee, J. H. Park, and H. J. Han. 2010. Lipid rafts play an important role for maintenance of embryonic stem cell self-renewal. J. Lipid Res. 51, 2082-2089. https://doi.org/10.1194/jlr.M001545
  26. Lee, R. H., B. Kim, I. Choi, H. Kim, H. S. Choi, K. T. Suh, Y. C. Bae, and J. S. Jung. 2004. Characterization and expression analysis of mesenchymal stem cells from human bone marrow and adipose tissue. Cell. Physiol. Biochem. 14, 311-324. https://doi.org/10.1159/000080341
  27. Legaspi, A., M. Jeevanandam, H. F. Starnes Jr, and M. F. Brennan. 1987. Whole body lipid and energy metabolism in the cancer patient. Metabolism 36, 958-963. https://doi.org/10.1016/0026-0495(87)90132-6
  28. Liu, Z. J., Y. Zhuge, and O. C. Velazquez. 2009. Trafficking and differentiation of mesenchymal stem cells. J. Cell Biochem. 106, 984-991. https://doi.org/10.1002/jcb.22091
  29. Loeffler, M., J. A. Kruger, A. G. Niethammer, and R. A. Reisfeld. 2006. Targeting tumor-associated fibroblasts improves cancer chemotherapy by increasing intratumoral drug uptake. J. Clin. Invest. 116, 1955-1962. https://doi.org/10.1172/JCI26532
  30. Loffler, D., K. Brocke-Heidrich, G. Pfeifer, C. Stocsits, J.Hackermüller, A. K. Kretzschmar, R. Burger, M. Gramatzki, C. Blumert, K. Bauer, H. Cvijic, A. K. Ullmann, P. F. Stadler, and F. Horn. 2007. Interleukin-6 dependent survival of multiple myeloma cells involves the Stat3-mediated induction of microRNA-21 through a highly conserved enhancer. Blood 110, 1330-1333. https://doi.org/10.1182/blood-2007-03-081133
  31. Mi, H., Q. Dong, A. Muruganujan, P. Gaudet, S. Lewis, and P. D. Thomas. 2010. PANTHER version 7: improved phylogenetic trees, orthologs and collaboration with the Gene Ontology Consortium. Nucleic Acids Res. 38, D204-210. https://doi.org/10.1093/nar/gkp1019
  32. Micke, P. and A. Ostman. 2005. Exploring the tumour environment: cancer-associated fibroblasts as targets in cancer therapy. Expert. Opin. Ther. Targets 9, 1217-1233. https://doi.org/10.1517/14728222.9.6.1217
  33. Ohlund, D., C. Lundin, B. Ardnor, M. Oman, P. Naredi, and M. Sund. 2009. Type IV collagen is a tumour stroma- derived biomarker for pancreas cancer. Br. J. Cancer 101, 91-97. https://doi.org/10.1038/sj.bjc.6605107
  34. Orimo, A. and R. A. Weinberg. 2006. Stromal fibroblasts in cancer: a novel tumor-promoting cell type. Cell Cycle 5, 1597-1601. https://doi.org/10.4161/cc.5.15.3112
  35. Ostman, A. and M. Augsten. 2009. Cancer-associated fibroblasts and tumor growth--bystanders turning into key players. Curr. Opin. Genet. Dev. 19, 67-73. https://doi.org/10.1016/j.gde.2009.01.003
  36. Patocs, A., L. Zhang, Y. Xu, F. Weber, T. Caldes, G. L. Mutter, P. Platzer, and C. Eng. 2007. Breast-cancer stromal cells with TP53 mutations and nodal metastases. N. Engl. J. Med. 357, 2543-2551. https://doi.org/10.1056/NEJMoa071825
  37. Picinich, S. C., P. J. Mishra, P. J. Mishra, J. Glod, and D. Banerjee. 2007. The therapeutic potential of mesenchymal stem cells. Cell- & tissue-based therapy. Expert. Opin. Biol. Ther. 7, 965-973. https://doi.org/10.1517/14712598.7.7.965
  38. Pittenger, M. F., A. M. Mackay, S. C. Beck, R. K. Jaiswal, R. Douglas, J. D. Mosca, M. A. Moorman, D. W. Simonetti, S. Craig, and D. R. Marshak. 1999. Multilineage potential of adult human mesenchymal stem cells. Science 284, 143-147. https://doi.org/10.1126/science.284.5411.143
  39. Rathinam, R. and S. K. Alahari. 2010. Important role of integrins in the cancer biology. Cancer Metastasis Rev. 29, 223-237. https://doi.org/10.1007/s10555-010-9211-x
  40. Rozen, N., S. Ish-Shalom, A. Rachmiel, H. Stein, and D. Lewinson. 2000. Interleukin-6 modulates trabecular and endochondral bone turnover in the nude mouse by stimulating osteoclast differentiation. Bone 26, 469-474. https://doi.org/10.1016/S8756-3282(00)00263-5
  41. Russell, S. T. and M. J. Tisdale. 2002. Effect of a tumour- derived lipid-mobilising factor on glucose and lipid metabolism in vivo. Br. J. Cancer 87, 580-584. https://doi.org/10.1038/sj.bjc.6600493
  42. Safford, K. M., K. C. Hicok, S. D. Safford, Y. D. Halvorsen, W. O. Wilkison, J. M. Gimble, and H. E. Rice. 2002. Neurogenic differentiation of murine and human adipose- derived stromal cells. Biochem. Biophys. Res. Commun. 294, 371-379. https://doi.org/10.1016/S0006-291X(02)00469-2
  43. Salazar, L. M. and A. M. Herrera. 2011. Fibrotic response of tissue remodeling in COPD. Lung [Epub ahead of print].
  44. Semba, S., Y. Kodama, K. Ohnuma, E. Mizuuchi, R. Masuda, M. Yashiro, K. Hirakawa, and H. Yokozaki. 2009. Direct cancer- stromal interaction increases fibroblast proliferation and enhances invasive properties of scirrhous-type gastric carcinoma cells. Br. J. Cancer 101, 1365-1373. https://doi.org/10.1038/sj.bjc.6605309
  45. Studeny, M., F. C. Marini, J. L. Dembinski, C. Zompetta, M. Cabreira-Hansen, B. N. Bekele, R. E. Champlin, and M. Andreeff. 2004. Mesenchymal stem cells: potential precursors for tumor stroma and targeted-delivery vehicles for anticancer agents. J. Natl. Cancer Inst. 96, 1593-1603. https://doi.org/10.1093/jnci/djh299
  46. Studeny, M., F. C. Marini, R. E. Champlin, C. Zompetta, I. J. Fidler, and M. Andreeff. 2002. Bone marrow-derived mesenchymal stem cells as vehicles for interferon-beta delivery into tumors. Cancer Res. 62, 3603-3608.
  47. Thomas, D. A. and J. Massagué. 2005. TGF-beta directly targets cytotoxic T cell functions during tumor evasion of immune surveillance. Cancer Cell 8, 369-380. https://doi.org/10.1016/j.ccr.2005.10.012
  48. Valtieri, M. and A. Sorrentino. 2008. The mesenchymal stromal cell contribution to homeostasis. J. Cell Physiol. 217, 296-300. https://doi.org/10.1002/jcp.21521
  49. Wahl, S. M. and W. Chen. 2005. Transforming growth factor- beta-induced regulatory T cells referee inflammatory and autoimmune diseases. Arthritis Res. Ther. 7, 62-68. https://doi.org/10.1186/ar1504
  50. Weigert, A., D. Sekar, and B. Brüne. 2009. Tumor-associated macrophages as targets for tumor immunotherapy. Immunotherapy 1, 83-95. https://doi.org/10.2217/1750743X.1.1.83
  51. Xing, F., J. Saidou, and K. Watabe. 2010. Cancer associated fibroblasts (CAFs) in tumor microenvironment. Front Biosci. 15, 166-179. https://doi.org/10.2741/3613
  52. Yu, J. M., E. S. Jun, Y. C. Bae, and J. S. Jung. 2008. Mesenchymal stem cells derived from human adipose tissues favor tumor cell growth in vivo. Stem Cells Dev. 17, 463-473. https://doi.org/10.1089/scd.2007.0181