DOI QR코드

DOI QR Code

Friction Welding Process Analysis of Piston Rod in Marine Diesel Engine and Mechanical Properties of Welded Joint

선박 디젤 엔진용 피스톤 로드의 마찰용접 공정해석 용접부 기계적 특성

  • 정호승 (부산대학교 롤스로이스 대학기술센터) ;
  • 손창우 (한국해양대학교 기계공학과 대학원) ;
  • 오중석 (현대중공업 엔진기계사업본부) ;
  • 최성규 ((주)케이에스피 기술연구소) ;
  • 조종래 (한국해양대학교 기계에너지시스템공학부)
  • Received : 2011.02.22
  • Accepted : 2011.05.04
  • Published : 2011.06.01

Abstract

The two objectives of this study were, first, to determine the optimal friction welding process parameters using finite element simulations and, second, to evaluate the mechanical properties of the friction welded zone for large piston rods in marine diesel engines. Since the diameters of the rod and its connecting part are very different, the manufacturing costs using friction welding are reduced compared to those using the forging process of a single piece. Modeling is a generally accepted method to significantly reduce the number of experimental trials needed when determining the optimal parameters. Therefore, because friction welding depends on many process parameters such as axial force, initial rotational speed and energy, amount of upset and working time, finite element simulations were performed. Then, friction welding experiments were carried out with the optimal process parameter conditions resulting from the simulations. The base material used in this investigation was AISI 4140 with a rod outer diameter of 280 mm and an inner diameter of 160 mm. In this study, various investigation methods, including microstructure characterization, hardness measurements and tensile and fatigue testing, were conducted in order to evaluate the mechanical properties of the friction welded zone.

Keywords

Acknowledgement

Supported by : 한국연구재단

References

  1. H. S. Jeong, T. Shinoda, 1997, Fundamentals and Basic Application of Friction Welding, J. Kor. Weld. Soc, Vol. 15(6), pp. 1-12.
  2. A. Z. Sahin, B. S. Yibas, M. Ahmed, J. Nickel, 1998, Analysis of the Friction Welding Process in Relation to the Welding of Copper and Steel Bar, J. Mater. Process. Technol., 82, pp. 127-136. https://doi.org/10.1016/S0924-0136(98)00032-6
  3. L. D'Alvisea, E. Massonia, S. J. Walloe, 2002, Finite element modelling of the inertia friction welding process between dissimilar materials, J. Mater. Process. Technol., Vol. 125-126, pp. 387-391. https://doi.org/10.1016/S0924-0136(02)00349-7
  4. Mumin Sahin, 2004, Simulation of friction welding using a developed computer program, J. Mater. Process. Technol., Vol. 153-154, pp. 1011-1018. https://doi.org/10.1016/j.jmatprotec.2004.04.287
  5. P. D. Sketchly, P. L. Threadgill, I. G. Wright, 2002, Rotary Friction Welding of a Fe3Al based ODS alloy, Mater. Sci. Eng., A 329-331, pp. 756-762. https://doi.org/10.1016/S0921-5093(01)01656-2
  6. H. J. Liu, H. Fujii, M. Maeda, K. Nogi, 2003, Tensile Properties and Fracture Locations of Friction-stir-welded Joints of 2017-T351 Aluminum Alloy, J. Mater. Process. Technol., Vol. 142, pp. 692-696. https://doi.org/10.1016/S0924-0136(03)00806-9
  7. A. A. M. d. silva, A. Meyer, J. F. d. Santos, C. E. F. Kwietniewski, T.R. Strohaecker, 2004, Mechanical and Metallurgical Properties of Friction welded TiC Particulate Reinforced Ti-6Al-4V, Compos. Sci. Technol., Vol. 64, pp. 1495-1501. https://doi.org/10.1016/j.compscitech.2003.10.017
  8. D. G. Lee, K. C. Jang, J. M. Kuk, I. S. Kim, 2004, Fatigue Properties of Inertia dissimilar Frictionwelded Stainless Steels, J. Mater. Process. Technol., Vol. 155-156, pp. 1402-1407. https://doi.org/10.1016/j.jmatprotec.2004.04.400
  9. S. Park, K. Um, N. Ma, K. Ahn, K. H. Chung, C. Kim, K. Okamoto, R. H. Wagoner, K. Chung, 2007, Analysis of Failure Phenomena in Uni-axial Tension Tests of Friction Stir Welded AA6111-T4, AA5083-H18 and DP-Steel, Trans. Mater. Process., Vol. 16, No. 4, pp. 304-308. https://doi.org/10.5228/KSPP.2007.16.4.304
  10. R. Moat, M. Karadge, M. Preuss, S. Bray, M. Rawson, 2008, Phase transformations across high strength dissimilar steel inertia friction weld, J. Mater. Process. Technol., Vol. 204, pp. 48-58. https://doi.org/10.1016/j.jmatprotec.2007.10.074
  11. H. S. Jeong, J. R. Cho, H. C. Park, 2007, Development of Dissimilar Inertia Welding Process of Large Superalloy Spindle, Key Eng. Mater., Vol. 345-346, pp. 1429-1432. https://doi.org/10.4028/www.scientific.net/KEM.345-346.1429
  12. H. S. Jeong, J. R. Cho, J. S. Oh, E. N. Kim, S. G. Choi, M. Y. Ha, 2010, Inertia Friction Welding Process Analysis and Mechanical Properties Evaluation of Large Rotor Shaft in Marine Turbo Charger, Int. J. Prediction Eng. and Manuf., Vol. 11, No. 1, pp. 83-88. https://doi.org/10.1007/s12541-010-0010-7

Cited by

  1. Development of integrated stub end by spinning process vol.16, pp.7, 2015, https://doi.org/10.1007/s12541-015-0195-x
  2. Forming-die-free integrated stub-end manufacturing process using spinning vol.17, pp.5, 2016, https://doi.org/10.1007/s12541-016-0083-z