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A REMARK ON GEL’FAND DUALITY

FOR SPECTRAL TRIPLES

Paolo Bertozzini, Roberto Conti, and Wicharn Lewkeeratiyutkul

Abstract. We present a duality between the category of compact Rie-
mannian spin manifolds (equipped with a given spin bundle and charge
conjugation) with isometries as morphisms and a suitable “metric” cate-

gory of spectral triples over commutative pre-C*-algebras. We also con-
struct an embedding of a “quotient” of the category of spectral triples
introduced in [5] into the latter metric category. Finally we discuss a fur-

ther related duality in the case of orientation and spin-preserving maps
between manifolds of fixed dimension.

1. Introduction

Although the main strength of non-commutative geometry is a full treat-
ment of non-commutative algebras as “duals of geometric spaces”, the foun-
dation of the theory relies on the construction of suitable categorical equiva-
lences, resp. anti-equivalences (i.e., covariant, resp. contravariant functors that
are isomorphisms of categories “up to natural transformations”) between cat-
egories of “geometric spaces” and categories of commutative algebras of func-
tions over these spaces, or some closely related structures (For the elementary
background in “category theory” the reader can refer to the on-line introduc-
tion by J. Baez [1] and the classical books by S. McLane [22] and M. Barr-
C. Wells [2]).

Typical examples of such (anti-)equivalences are listed below, itemized by
the name of the people who worked them out:

• Hilbert: between algebraic sets and finitely generated algebras over
an algebraically closed field [19];

• Stone: between totally disconnected compact Hausdorff topological
spaces and Boolean algebras [32, 33];

• Gel’fand-Năımark: between the category of continuous maps of com-
pact Hausdorff topological spaces and the category of unital involutive
homomorphisms of unital commutative C*-algebras [15, 16];
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• Halmos-von Neumann: between the category of measurable maps of
measure spaces and the category of unital involutive homomorphisms
of commutative von Neumann algebras [18];

• Serre-Swan: between the category of vector bundle maps of finite-
dimensional locally trivial vector bundles over a compact Hausdorff
topological space and the category of homomorphisms of finite projec-
tive modules over a commutative unital C*-algebra [31, 34];

• Cartier-Grothendieck: between the category of commutative sche-
mes (ringed spaces) in algebraic geometry and the category of topoi
(sheaves over topological spaces); see I. Dolgachev’s historical notes [13,
Section 1];

• Takahashi: between the category of Hilbert bundles on (different)
compact Hausdorff spaces and the category of Hilbert C*-modules over
(different) commutative unital C*-algebras [35, 36];

Even more dualities arise when the spaces in question are equipped with
additional structure, most notably a group structure or the like (see Pontryagin-
Van Kampen [25, 38], Tannaka-Krĕın [37, 20] and Doplicher-Roberts [14]).

In this paper we will focus our attention on the Gel’fand-Năımark duality,
to which the other dualities are related in significant way. In short, the fun-
damental message that can be read off from the celebrated Gel’fand-Năımark
theorem on commutative C*-algebras is that, at the “topological level”, the
information on a “space” can be completely encoded in (and recovered from)
a suitable “algebraic structure”.

In applications to physics (at least for those branches that are dealing with
“metric structures” such as general relativity), it would be important to “tune”
Gel’fand-Năımark’s correspondence in order to embrace classes of spaces with
more detailed geometric structures (e.g. differential, metric, connection, curva-
ture).

In recent times, Connes’ non-commutative geometry [7, 17] has emerged as
the most outstanding proposal in this direction, based on the notion of spectral
triple.

In this note we provide a further example of categorical anti-equivalence
between Riemannian spin-manifolds and commutative Connes’ spectral triples
(see Theorem 3.3). This line of thought is expected to play an important
role in future developments of the categorical structure of non-commutative
geometry, and spectral triples in particular (see [6]), as well as in the study of
(geometric) quantization, where the construction of functorial relations between
“commutative” and “quantum” spaces are central points of investigation.

Although the idea of reconstructing a smooth manifold out of a commutative
spectral triple has been latent for some time (see [9, 10, 26, 27, 11, 12]), the
point to promote it to a categorical level seems to be new. Our main tool is
the notion of metric morphisms of spectral triples, namely those preserving
Connes’ distance on the state space.
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In the second part of the paper, we examine some connection between the
category of “metric spectral triples” (on which the equivalence result is based)
and our previous work on morphism of spectral triples [5]. It should be possi-
ble to provide other equivalence results in terms of categories of spectral triples
based on different notions of morphism (at least for some classes of Riemann-
ian manifolds); some of these issues are presently under investigation (see [6,
Section 4.1] for an overview).

It should be remarked that Connes’ distance formula has been systematically
adopted by M. Rieffel as the backbone of his notion of quantum compact metric
space (see [29] and references therein). Although we present our result in the
framework of Connes’ spectral triples, it is likely that our ideas might find some
application also in Rieffel’s framework.

In order to keep the length of this paper as short as possible, we will re-
fer to the literature for all the background material and only recall the basic
definitions.

1.1. Spectral triples

Following A. Connes’ axiomatization (see [7, 17, 11] for all the details), a
compact spectral triple (A,H, D) consists of

a) a unital pre-C*-algebra A (that is sometimes required to be closed
under holomorphic functional calculus),

b) a (faithful) representation π : A → B(H) of the algebra A on a Hilbert
space H and

c) a Dirac operator, i.e., a (generally unbounded) self-adjoint operator D,
with compact resolvent (D − λ)−1 for every λ ∈ C − R and such that
[D,π(a)]− ∈ B(H) for all a ∈ A, where [x, y]± := xy ± yx denote the
anticommutator and the commutator, respectively, of x, y ∈ B(H).

A spectral triple is called even if it is equipped with a grading operator, i.e.,
a bounded self-adjoint operator Γ ∈ B(H) such that:

Γ2 = IdH; [Γ, π(a)]− = 0 ∀a ∈ A; [Γ, D]+ = 0.

A spectral triple without grading is called odd.

A spectral triple is regular if the functions Ξx : t 7→ exp(it|D|)x exp(−it|D|)
are “smooth”, i.e., Ξx ∈ C∞(R,B(H)) for every x ∈ ΩD(A), where we define

ΩD(A) := span{π(a0)[D,π(a1)]− · · · [D,π(an)]− | n ∈ N, a0, . . . , an ∈ A}.

This regularity condition can be equivalently expressed requiring that, for all
a ∈ A, π(a) and [D,π(a)]− are contained in ∩∞

m=1Dom δm, where δ is the
derivation given by δ(x) := [|D|, x]−.

The spectral triple is n-dimensional if and only if there exists an integer n
such that the Dixmier trace of |D|−n is finite non-zero. A spectral triple is
θ-summable if exp(−tD2) is a trace-class operator for every t > 0.
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A spectral triple is real if it is equipped with a real structure, i.e., an antiu-
nitary operator J : H → H such that:

[π(a), Jπ(b∗)J−1]− = 0 ∀a, b ∈ A;

[[D,π(a)]−, Jπ(b
∗)J−1]− = 0 ∀a, b ∈ A, first-order condition;

J2 = ±IdH; [J,D]± = 0;

and, only in the even case, [J,Γ]± = 0,

where the choice of ± in the last three formulas depends on the “dimension”
n of the spectral triple modulo 8 according to the following table:

n 0 1 2 3 4 5 6 7
J2 = ±IdH + + − − − − + +
[J,D]± = 0 − + − − − + − −
[J,Γ]± = 0 − + − +

A spectral triple is finite if H∞ := ∩∞
k=1DomDk is a finite projective A-

bimodule and absolutely continuous if, there exists a Hermitian form (ξ, η) 7→
(ξ | η) on H∞ such that, for all a ∈ A, ⟨ξ | π(a)η⟩ is the Dixmier trace of
π(a)(ξ | η)|D|−n.

An n-dimensional spectral triple is said to be orientable if there is a Hoch-

schild cycle c =
∑m

j=1 a
(j)
0 ⊗ a

(j)
1 ⊗ · · · ⊗ a

(j)
n such that its “representation”

on the Hilbert space H, π(c) =
∑m

j=1 π(a
(j)
0 )[D,π(a

(j)
1 )]− · · · [D,π(a(j)n )]− is

the grading operator in the even case or the identity operator in the odd case
(In the following, in order to simplify the discussion, we will always refer to a
“grading operator” Γ that actually coincides with the grading operator in the
even case and that is by definition the identity operator in the odd case).

A real spectral triple is said to satisfy Poincaré duality if its fundamental
class in the KR-homology of A⊗Aop induces (via Kasparov intersection prod-
uct) an isomorphism between the K-theory K•(A) and the K-homology K•(A)
of A. In [27] some of the axioms are reformulated in a different form, in particu-
lar this condition is replaced by the requirement that the C*-module completion
of H∞ is a Morita equivalence bimodule between (the norm completions of) A
and ΩD(A).

A spectral triple will be called commutative, or Abelian, whenever A is com-
mutative.

Finally a spectral triple with real structure J and grading Γ is irreducible if
there is no non-trivial closed subspace in H that is invariant for π(A), D, J, Γ.

1.2. Reconstruction theorem (commutative case)

Let M be a real compact orientable Riemannian m-dimensional spin C∞

manifold with a given volume form µM . Let us denote (see [30] for details) by
S(M) a given irreducible complex spinor bundle over M , i.e., a bundle over M
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equipped with a left action c : Cl(+)(T (M))⊗S(M) → S(M) of the “Clifford”

bundle Cl(+)(T (M)) inducing a bundle isomorphism between Cl(+)(T (M)) and

End(S(M)), where following [17, Page 373] we denote by Cl(+)(T (M)) the com-
plexified Clifford bundle of M if dimM is even and respectively its even sub-
algebra bundle Cl+(T (M)) if dimM is odd. Let [S(M)] be the spinc structure
of M determined by S(M).

Recall that an orientable Riemannian manifold is spinc if it admits a complex
irreducible spinor bundle [30, Definition 7]. A spinc manifold usually admits
several inequivalent spinc structures and that for a given spinc structure, a
complex irreducible spinor bundle over M is determined only up to (Hermit-
ian) bundle isomorphism. A spinc manifold is spin if and only if it admits a
complex spinor bundle with a charge conjugation [30, Definition 8]. A spin
manifold usually admits several inequivalent spin structures even for the same
spinc structure and that for a given spin structure a conjugation operator is
determined only up to intertwining with (Hermitian) bundle isomorphisms.

Let CM be a given “spinorial” charge conjugation on S(M), i.e., an antilinear
Hermitian bundle morphism such that CM ◦ CM = ± IdS(M) (signs depending
on dimM modulo 8 as in the table in Section 1.1) that is “compatible” with

the charge conjugation κ in Cl(+)(T (M)), which is the composition of the
natural grading operator and the canonical conjugation, i.e., CM (β(p) ·σ(p)) =
κ(β(p)) · CM (σ(p)) for any section β ∈ Γ(Cl(+)(T (M))) of the Clifford bundle
and any section σ ∈ Γ(S(M)) of the spinor bundle. We denote by [(S(M), CM )]
the spin structure on M determined by CM .

LetAM :=C∞(M ;C) be the commutative pre-C*-algebra of smooth complex
valued functions on M . We denote by πM its representation by pointwise
multiplication on the space HM := L2(M,S(M)), the completion of the space
Γ∞(M,S(M)) of smooth sections of the spinor bundle S(M) equipped with
the inner product ⟨σ | τ⟩ :=

∫
M
⟨σ(p) | τ(p)⟩p dµM , where ⟨· | ·⟩p is the unique

inner product on Sp(M) compatible with the Clifford action and the Clifford
product. Note that the spinorial charge conjugation CM (being unitary on the
fibers) has a unique antilinear unitary extension JM : HM → HM determined
by (JMσ)(p) := CM (σ(p)) for σ ∈ Γ∞(S(M)) and p ∈M .

Let ΓM be the unique unitary extension on HM of the operator ΛM on

Γ(S(M)) acting by left action of the chirality element γ ∈ Γ(Cl(+)(T (M))),

that implements the grading χ of Γ(Cl(+)(T (M))) as inner automorphism (the
grading is actually the identity in odd dimension).

Denote by DM the Atiyah-Singer Dirac operator on the Hilbert space HM ,
i.e., the closure of the operator that on Γ∞(S(M)) is obtained by “contract-
ing” the unique spin covariant derivative ∇S (induced on Γ∞(S(M)) by the
Levi-Civita covariant derivative of M , see [17, Theorem 9.8]) with the Clifford
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multiplication. For a detailed discussion on Atiyah-Singer Dirac operators we
refer to [3, 21, 30].

We have the following fundamental results:

Theorem 1.1 (Connes, see e.g. [7, 8] and Section 11.1 in [17]). Given an ori-
entable compact spin Riemannian m-dimensional differentiable manifold M ,
with a given complex spinor bundle S(M), a given spinorial charge conjugation
CM and a given volume form µM , the data (AM ,HM , DM ) defines a commu-
tative regular finite absolutely continuous m-dimensional spectral triple that is
real, with real structure JM , orientable, with grading ΓM , and satisfies Poincaré
duality.

Theorem 1.2 (Connes [9, 11]). Let (A,H, D) be an irreducible commutative
real (with real structure J and grading Γ) strongly regular (in the sense of [11,
Definition 6.1]) m-dimensional finite absolutely continuous orientable spectral
triple, with totally antisymmetric (in the last m entries) Hochschild cycle, and
satisfying Poincaré duality. The spectrum of (the norm closure of) A can be
endowed, in a unique way, with the structure of an m-dimensional connected
compact orientable spin Riemannian manifold M with an irreducible complex
spinor bundle S(M), a charge conjugation JM and a grading ΓM such that:

A ≃ C∞(M ;C), H ≃ L2(M,S(M)), D ≃ DM , J ≃ JM , Γ ≃ ΓM .

A. Connes first proved the previous Theorem 1.2 under the additional condi-
tion that A is already given as the algebra of smooth complex-valued functions
over a differentiable manifold M , namely A = C∞(M ;C) (for a detailed proof
see e.g. [17, Theorem 11.2]), and conjectured [9], [10, Theorem 6, Remark (a)]
the result for general commutative pre-C*-algebras A.

A tentative proof of this last fact has been published by A. Rennie [26]; some
gaps were pointed out in the original argument, a different revised, but still
incorrect, proof appears in [27] (see also [28]) under some additional technical
conditions. Recently A. Connes [11] finally provided the missing steps in the
proof of the result.

As a consequence, there exists a one-to-one correspondence between uni-
tary equivalence classes of spectral triples and connected compact oriented
Riemannian spin-manifolds up to spin-preserving isometric diffeomorphisms.

Similar results should also be available for spinc manifolds [10, Theorem 6,
Remark (e)].

1.3. Connes’ distance formula

Given a spectral triple (A,H, D), let us denote by S(A) and P(A) the sets of
states and pure states of the pre-C*-algebra A, respectively. If A := C∞(M ;C),
for all p ∈ M we denote by evp : x 7→ x(p) the “evaluation functional” in p
of the functions x ∈ A and note that evp ∈ P(A). Actually in this case P(A)
coincides with the set of all evaluation functionals.
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Going back to the general case, the Connes’ distance dD on P(A) is the
function on P(A)× P(A) given by

dD(ω1, ω2) := sup{|ω1(x)− ω2(x)| | x ∈ A, ∥[D,π(x)]∥ ≤ 1}.
Strictly speaking, without imposing other conditions, dD could also take the
value +∞ as in the case of non-connected manifolds. In turn, one can use the
same formula to define a “distance” on the set of all the states of A.

Theorem 1.3 (Connes’s distance formula, [17, Proposition 9.12]). If the spec-
tral triple (A,H, D) is obtained as in Theorem 1.1 from a compact finite-dimen-
sional oriented Riemannian spin manifold M equipped with a spinor bundle
S(M) and a spinorial charge conjugation CM , then for every p, q ∈ M ,
dD(evp, evq) coincides with the geodesic distance

dM (p, q) := inf
{∫ b

a

∥γ′(t)∥ dt | γ is a geodesic with γ(a) = p, γ(b) = q
}
.

Of course, given a unital ∗-morphism ϕ : A1 → A2 there is a pull-back
ϕ• : S(A2) → S(A1) defined by ϕ•(ω) := ω ◦ ϕ for all ω ∈ S(A2).

2. A metric category of spectral triples

The objects of all of our categories will be compact spectral triples (A,H, D),
possibly with additional structure.

Given two spectral triples (Aj ,Hj , Dj), with j = 1, 2, a metric morphism of

spectral triples (A1,H1, D1)
ϕ−→ (A2,H2, D2) is by definition a unital epimor-

phism ϕ : A1 → A2 of pre-C*-algebras whose pull-back ϕ• : P(A2) → P(A1)
is an isometry (note that if ϕ is an epimorphism, its pull-back ϕ• maps pure
states into pure states), i.e.,

dD1(ϕ
•(ω1), ϕ

•(ω2)) = dD2(ω1, ω2), ∀ω1, ω2 ∈ P(A2).

Spectral triples with metric morphisms form a category S m.

Remark 2.1. A unitary equivalence of spectral triples gives an isomorphism in
the metric category S m.

2.1. A local metric category of spectral triples

For convenience of the reader, we recall here the definitions of morphisms of
spectral triples proposed in our previous work [5, Sections 2.2-2.3].

A morphism in the category S , between spectral triples (Aj ,Hj , Dj), j =
1, 2, is a pair (ϕ,Φ), where ϕ : A1 → A2 is a ∗-morphism between the pre-C*-
algebras A1,A2 and Φ : H1 → H2 is a bounded linear map in B(H1,H2) such
that π2(ϕ(x))◦Φ = Φ◦π1(x), ∀x ∈ A1 and D2◦Φ(ξ) = Φ◦D1(ξ) ∀ξ ∈ DomD1.

In a similar way, a morphism of real spectral triples (Aj ,Hj , Dj , Jj) with
j = 1, 2, in the category of real spectral triples Sr, is a morphism in S such
that Φ also satisfies J2 ◦ Φ = Φ ◦ J1. Finally a morphism of even spectral
triples (Aj ,Hj , Dj ,Γj) with j = 1, 2, in the category of even spectral triples
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Se, is a morphism in S such that Γ2 ◦ Φ = Φ ◦ Γ1. We will denote by SI

(respectively SIr,SIre) the subcategory of S (respectively Sr,Sre) consisting
of “isometric” morphisms of spectral triples, i.e., pairs (ϕ,Φ) with ϕ surjective
and Φ co-isometric.

The reader can consult appendix A for a list of all the categories of spectral
triples that are introduced and used in this paper.

3. The metric functor C

Let us consider the class M of C∞ metric isometries of compact finite-
dimensional C∞ orientable Riemannian spin manifoldsM equipped with a fixed
spinor bundle S(M), a given spinorial charge conjugation CM and a volume
form µM . Note that in general a Riemannian isometry is not necessarily a
metric isometry. The class M with the usual composition of functions forms a
category.

Proposition 3.1. There is a contravariant functor C from the category M
to the category S m that to every triple (M,S(M), CM ) ∈ M associates the
spectral triple (A,H, D) ∈ S m given as in Theorem 1.1 and that to every
smooth metric isometry f :M1 →M2 associates its pull-back f• : A2 → A1.

Proof. Every smooth metric isometry f : M1 → M2 in M is a Riemannian
isometry of M1 onto a closed embedded submanifold f(M1) of M2. Since
every smooth function on a closed embedded submanifold is the restriction of
a smooth function on M2, the pull-back ϕ := f• is a unital epimorphism of
the pre-C*-algebras ϕ : A2 → A1 and, by Theorem 1.3, ϕ• : P(A1) → P(A2) is
metric-preserving:

dD2(ϕ
•(ω1), ϕ

•(ω2)) = dD2(ϕ
•(evp), ϕ

•(evq)) = dD2(evf(p), evf(q))

= dM2(f(p), f(q)) = dM1(p, q) = dD1(evp, evq)

= dD1(ω1, ω2),

where p, q ∈M1 are the unique points such that ω1 = evp and ω2 = evq.
Of course C(g ◦ f) = (g ◦ f)• = f• ◦ g• = Cf ◦ Cg and CιM = ιC(M). □

Definition 3.2. An Atiyah-Singer spectral triple is a spectral triple (A,H, D)
that satisfies all the conditions in A. Connes’ reconstruction Theorem 1.2, i.e.,
(A,H, D) is irreducible commutative real (with real structure J and grading
Γ) strongly regular (in the sense of [11, Definition 6.1]) m-dimensional finite
absolutely continuous orientable, with totally antisymmetric (in the last m
entries) Hochschild cycle, and satisfies Poincaré duality.

By the reconstruction Theorem 1.2 every Atiyah-Singer spectral triple is
isomorphic to a spectral triple constructed, as in Theorem 1.1, from an ori-
entable connected compact spin Riemannian finite-dimensional differentiable
manifold equipped with a given complex spinor bundle and a spinorial charge
conjugation.
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We denote by AS-S m the full subcategory of the metric category S m whose
objects are direct sums of Atiyah-Singer spectral triples. In a completely similar
way, we denote by AS-S the full subcategory of the local metric category S
whose objects are direct sums of Atiyah-Singer spectral triples in S . The
functor C in Proposition 3.1 takes actually values in the category AS-S m.

Here we present the main result of this paper.

Theorem 3.3. The metric functor C is an anti-equivalence between the cate-
gories M and AS-S m.

Proof. The functor C is faithful: if Cf = Cg for two smooth isometries f, g :
M1 → M2, then f• = g• as morphisms of pre-C*-algebras and hence they
coincide also when uniquely extend to morphisms of C*-algebras of continuous
functions and the result f = g follows from Gel’fand duality theorem.

The functor C is full: if ϕ : C(M2) → C(M1) is a metric morphism in S m, as
a homomorphisms of pre-C* algebras of smooth functions, ϕ extends uniquely
to a morphism of C*-algebras of continuous functions and, from Gel’fand dual-
ity theorem, there exists a unique continuous function f :M1 →M2 such that
f• = ϕ. From the fact that f• maps smooth functions on M2 to smooth func-
tions on M1 it follows that f is a smooth function between manifolds. Since
ϕ also preserves the spectral distances, it follows that f is a smooth metric
isometry hence a Riemannian isometry.

The functor C is representative: for when restricted to the subcategory of
connected manifolds with target the subcategory of irreducible spectral triples,
this is actually a restatement of the reconstruction Theorem 1.2 and remark 2.1.
Since the functor C maps disjoint unions of connected components into direct
sums of spectral triples, the result follows. □

Unfortunately, at this stage, we cannot present a statement involving the
category of all Abelian spectral triples. The above result raises naturally the
issue of decomposing (Abelian) spectral triples in terms of irreducible compo-
nents.

Remark 3.4. In restriction to the subcategory Md of dimension-preserving
smooth isometries (i.e., isometric immersions with fiberwise isomorphic tan-
gent maps), the metric functor C is an anti-equivalence between Md and the
subcategory AS-S m

d of metric morphisms of direct sums of irreducible Abelian
spectral triples with the same dimension. In a similar way, denoting by I(C )
the groupoid of isomorphisms of C , we have that C|I(M ) is an anti-equivalence
between I(M ) and the groupoid I(AS-S m). The groupoid of isomorphisms of
M (always a subcategory of Md) is actually the “disjoint union” of denumer-
able “connected components” consisting of the categories of smooth bijective
isometries of n-dimensional spin-manifolds.
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4. Metric and spin categories

We now proceed to establish a connection between the category S m of
metric spectral triples and the categories of spectral triples S (respectively
real spectral triples Sr) introduced in [5, Section 2.2-2.3] and briefly recalled
in Section 2.1.

Denote by S 0 (respectively S 0
Ired) the category of spectral triples whose

morphisms are those homomorphisms of algebras ϕ for which there exists at
least one Φ such that the pair (ϕ,Φ) is a morphism in S (respectively SIred).

1

We have a “forgetful” full functor F : S → S 0 that to every morphism (ϕ,Φ)
in S associates ϕ as a morphism in S 0.

Lemma 4.1. A metric isometry of Riemannian manifolds with the same di-
mension is a smooth Riemannian isometry onto a union of connected compo-
nents.

Proof. Let f : M → N be a metric isometry. Since dimM = dimN , by
Brouwer’s theorem, we see that f is open and maps each connected component
of M onto a unique connected component of N . By the Myers-Steenrod the-
orem (see for example [24, Section 5.9, Theorem 9.1]), any such bijective map
between connected components is a smooth Riemannian surjective isometry;
hence f : M → N is a smooth Riemannian isometry onto f(M), a union of
connected components of N . □

Let f : (M,S(M), CM ) → (N,S(N), CN ) be a morphism in Md. Thanks
to the last lemma, we can consider the differential Df : T (M) → T (N). It
is a monomorphism of Euclidean bundles and induces a unique Bogoljubov

morphism ClDf : Cl(+)(T (M)) → Cl(+)(T (N)) of the Clifford bundles that

is actually an isomorphism of Cl(+)(T (M)) with subbundle Cl(+)(T (f(M))),
the Clifford bundle of the submanifold f(M) (From this we see that the sub-

algebra Cl(+)(f(M)) ⊂ Cl(+)(N) of sections of the Clifford bundle of N with

support in f(M) is naturally isomorphic with the algebra Cl(+)(M) of sec-
tions of the Clifford bundle of M . Since the restriction to f(M) is a natu-

ral epimorphism ρ : Cl(+)(N) → Cl(+)(f(M)), (ρ acts on Clifford fields by
multiplication with the characteristic function of f(M)), there is a natural

unital epimorphism of algebras ψ : Cl(+)(N) → Cl(+)(M) that becomes an

isomorphism when restricted to Cl(+)(f(M))). This isomorphism can be used

to “transfer” the irreducible Clifford action of Cl(+)(T (f(M))) on the bundle

S(f(M)) := S(N)|f(M) to an irreducible action of Cl(+)(T (M)) and, since
the bundle f•(S(N)) = f•(S(f(M))) is naturally isomorphic to S(f(M)), the
bundle f•(S(N)) becomes an irreducible complex spinor bundle on M . By a
similar argument, f•(S(N)) comes equipped with a spinorial charge conjuga-
tion f•(CN ) obtained by “pull-back” of (the restriction to S(f(M)) of) CN

through the isomorphism f•(S(N)) ≃ S(f(M)).

1Please refer to appendix A for the list of the categories of spectral triples.
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We say that f is spin-preserving if the spin structure [(f•(S(N)), f•(CN ))]
determined by f•(S(N)) with spinorial charge conjugation f•(CN ) coincides
with the spin structure of M , i.e., if there exists an isomorphism of Hermitian
bundles U : f•(S(N)) → S(M) that intertwines the charge conjugations: U ◦
f•(CN ) = CM ◦ U and the Clifford actions. Note that if f is orientation-
preserving, the isomorphism U also intertwines the grading operators of the
spinor bundles.

Let us denote by Md-spin the subcategory of spin and orientation-preserving
maps in Md.

The following result, that we report for completeness, is certainly well-known
although we could not find any suitable reference. Note that AS-SIred de-
notes the full subcategory of SIred whose objects are direct sums of irreducible
Abelian spectral triples.

Proposition 4.2. LetM,N be two compact orientable Riemannian spin-mani-
folds in the category M . If f : M → N is a spin-preserving isomorphism of
Riemannian manifolds, the spectral triples (AM ,HM , DM ) and (AN ,HN , DN )
are isomorphic in the category AS-SIred.

Proof. The pull-back ϕ := f• is a ∗-isomorphism ϕ : AN → AM of pre-C*-
algebras.

Consider the “pull-back of spinor fields” given by the invertible map Ψ :=
σ 7→ σ ◦ f for all σ ∈ HN . Since f is an orientation-preserving Riemannian
isometry, it leaves invariant the volume forms f•(µN ) = µM and so we obtain∫

M

⟨Ψ(σ)(x) | Ψ(τ)(x)⟩ dµM (x) =

∫
N

⟨σ(y) | τ(y)⟩ dµN (y)

that implies that the map Ψ : HN → L2(M,f•(S(N))) =: H• is a unitary
operator.

Since f•(S(N)) is a Hermitian bundle overM , H• carries a natural represen-
tation π• of the algebra AM given by pointwise multiplication. Ψ intertwines
πN and π• ◦ ϕ, i.e., Ψ(πN (a)σ) = π•(ϕ(a))Ψ(σ) for a ∈ AN and σ ∈ HN .

Let U : f•(S(N)) → S(M) be a (noncanonical) isomorphism of Hermitian
bundles induced by the spin-preserving condition on f . Since we know that U
is unitary on the fibers, we have

∫
M
⟨Uσ(p) | Uτ(p)⟩Sp(M) dµM (p) =

∫
M
⟨σ(p) |

τ(p)⟩f•
p (S(N)) dµM (p) for all σ, τ ∈ Γ∞(f•(S(N))). Hence U uniquely extends

to a unitary map ΘU : H• → HM . Note that ΘU is AM -linear: ΘU (a · σ) =
a ·ΘU (σ), for a ∈ AM and σ ∈ H•.

Now it is not difficult to check that the pair (ϕ,ΘU ◦Ψ) is an isomorphism in
the category SIred from the spectral triple (AN ,HN , DN ) to (AM ,HM , DM ).

□

Lemma 4.3. If M and N are two orientable compact Riemannian spin-mani-
folds in the category M and (u,U) is an isomorphism from (AN ,HN , DN )
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to (AM ,HM , DM ) in the category AS-SIre, then there is a spin-preserving
orientation-preserving Riemannian isometry (metric isometry) f : M → N
such that f• = u.

Proof. The map u : AN → AM naturally extends to a ∗-isomorphisms of C*-
algebras and by Gel’fand theorem there exists a homeomorphism f : M → N
such that f• = u. Since f• maps smooth functions onto smooth functions, f
is a diffeomorphism.

The filtered algebra ΩM (AM ) (respectively ΩN (AN )) coincides with the fil-

tered algebra of smooth sections of the Clifford bundle Cl(+)(T (M)) (respec-

tively Cl(+)(T (N))) and the map AdU : ΩDN
(AN ) → ΩDM

(AM ) is a filtered
isomorphisms (extending f•). Therefore its restriction AdU : Ω1

DN
(AN ) →

Ω1
DM

(AM ) is an isomorphism between the Hermitian modules of sections of
the complexification of the tangent bundles T (M) and T (N).

From Serre-Swan theorem, Df : T (M) → T (N) is an isomorphism of Eu-
clidean bundles which implies that f is a Riemannian isometry.

Since AdU (JN ) = JM and AdU (ΓN ) = ΓM , f is orientation- and spin-
preserving. □

We can now state the promised equivalence result.

Theorem 4.4. The functor C is an equivalence between the category Md-spin
and the category AS-S 0

Ired.

Proof. First, we show that the functor C is an embedding of the category Md-
spin into AS-S 0

Ired, and thus it is faithful.

Let f : M → N be a spin-preserving metric isometry in Md-spin. By
Lemma 4.1 f :M → N is a smooth Riemannian isometry onto the closed sub-
manifold f(M), a union of connected components of N .

We denote by ρ : AN → Af(M) the restriction epimorphism.

The Hilbert space HN = L2(N,S(N)) decomposes as the direct sum

⊕j∈π0(N)Hj

of Hilbert spaces (one for each connected component j ∈ π0(N) of N) and the
multiplication operator P by the characteristic function χf(M) is the projec-
tion operator onto the subspace Hf(M) := P (HN ) = ⊕j∈π0(f(M))Hj (cf. [17,
Page 491]). Note that, since the Dirac operator DN is “local” (i.e., it preserves
the support of the spinor fields), the subspace Hf(M) is invariant for DN . In
the same way, since JN and ΓN acts fiberwise, Hf(M) is invariant for the charge
conjugation and grading of N .

DefiningDf(M) := P ◦DN ◦P , Jf(M) := P ◦JN ◦P and Γf(M) := P ◦ΓN ◦P , it
is immediate that (Af(M),Hf(M), Df(M)) is a real (even) spectral triple and it
follows that the “restriction” map P : HN → Hf(M) satisfies ∀a ∈ AN , σ ∈ HN ,
P (aσ) = ρ(a)P (σ), P ◦DN = Df(M)◦P , P ◦JN = Jf(M)◦P , P ◦ΓN = Γf(M)◦P .
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This means that the pair (ρ, P ) is a morphism in the category SIred from
(AN ,HN , DN ) to the triple (Af(M),Hf(M), Df(M)), which is nothing but the
spectral triple obtained from the manifold f(M). By Proposition 4.2, there
exists an isomorphism from (Af(M),Hf(M), Df(M)) to (AN ,HN , DN ) in the
category SIred, and the conclusion follows by composition with the previous
(ρ, P ).

Next, we show that the identity functor is an inclusion of the category AS-
S 0

Ired into the category AS-S m
d , which implies that C is representative.

Let ϕ : (A1,H1, D1) → (A2,H2, D2) be an isomorphism in the category AS-
S 0

Ired. By the reconstruction Theorem 1.2, there are two manifolds M and N
in the category M such that (AN ,HN , DN ) is isomorphic to (A1,H1, D1) and
(AM ,HM , DM ) is isomorphic to (A2,H2, D2) with isomorphisms (ϕN , UN ) and
(ϕM , UM ), respectively, in the category SIred.

By Lemma 4.3, ϕM ◦ϕ◦ϕ−1
N ∈ S 0

Ired is the image under C of a spin-preserving
Riemannian isometry f that (for manifolds of the same dimension) is a metric
isometry in Md.

Since ϕM , ϕN are isomorphisms in AS-S 0
Ired and hence, by Remark 2.1,

isomorphisms also in AS-S m
d , it follows that ϕ = ϕ−1

M ◦ C(f) ◦ ϕN ∈ AS-S m
d .

Finally, we show that C is full.

Let M and N be manifolds in the category Md-spin and let ϕ : C(N) →
C(M) be a morphism in the category S 0

Ired. Since we proved above that
AS-S 0

Ired is a subcategory of AS-S m
d , we have that ϕ is a morphism in the

category S m
d and from Remark 3.4 there exists a metric isometry f :M → N

in the category Md such that C(f) = ϕ. Since ϕ defines an isomorphism
between C(f(M)) and C(M) in S 0

Ired then, by Lemma 4.3, f : M → f(M) is
(orientation and) spin-preserving and we are done. □

Let us summarize the categorical “relations” now available with the com-
mutative diagram of functors (please refer to the appendix A for a list of the
categories involved)

AS-S 0
Ired

� � // AS-S m
d

� � // AS-S m

AS-S m
d -spin

4 T

gg

* 


88

Md-spin

C

77 77

� � //

C

OO

Md
� � //

C

OO

M ,

C

OO

where AS-S m
d -spin := C(Md-spin). The left and right vertical inclusion func-

tors correspond respectively to the embedding described at the beginning of
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the proof in Theorem 4.4 and to the anti-equivalence in Theorem 3.3; the hor-
izontal top-left arrow is the inclusion functor described in the course of the
proof of Theorem 4.4.

Loosely speaking, one would expect a similar structure to carry over to the
general non-commutative setting, relating subcategories of “spin-preserving”
morphisms in S m and “metric-preserving” morphisms in S 0

Ire. However, in
general things might be more complicated. For the time being, we just mention
the following result, omitting the (easy) details of the proof.

Proposition 4.5. Let (A1,H1, D1)
(ϕ,Φ)−−−→ (A2,H2, D2) be a morphism of the

spectral triples in the category S , where Φ is a coisometry. Then

dD1(ω1 ◦ ϕ, ω2 ◦ ϕ) ≤ dD2(ω1, ω2), ∀ω1, ω2 ∈ S(A2).

We have discussed only the case of spin-manifolds. We also expect analogous
statements to hold true for spinc manifolds.

5. Final comments

The main result presented in this paper is a reformulation of the Gel’fand-
Năımark duality in the light of Connes’ reconstruction theorem for spin Rie-
mannian manifolds. It seems to us that the functoriality of such correspondence
has some intriguing appeal and one could ask to which extent it is possible to
“lift” it to some of the other main objects entering the scene, notably the Dirac
operators. This issue is presently under investigation.

From the perspective of this work, the use of the spin structure has been
only instrumental in recasting Gel’fand-Năımark theorem in the light of the
Connes’ reconstruction theorem, and actually it might appear as an unneces-
sary complication: it introduces some redundancy in the main result and, when
incorporated tout-court in the setup, it does not lead to a genuine categorical
anti-equivalence.

This might suggest that in a successive step one could try to get rid of such a
structure, thus obtaining a different kind of categorical duality between a met-
ric category of (isometries of) Riemannian manifolds and suitable categories
of spectral data (for example considering spectral triples arising from the sig-
nature Dirac operator in place of those arising from the usual Atiyah-Singer
Dirac operator). Although several variants of morphisms can be introduced
between spectral triples (see [6, Section 4.1] for details), corresponding to the
“rigidity” imposed on the maps between manifolds (totally geodesic isometries,
Riemannian isometries, . . . ), this line of thought does not require significant
structural modifications in the definitions of morphisms for the categories of
spectral geometries involved (as a pair of maps at the algebra and the Hilbert
space level) and will be pursued elsewhere (see [4] for more details).

The actual construction of functors (and dualities) from categories of spin
Riemannian manifolds (with different dimensions) to “suitable” categories of
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spectral triples (of the Atiyah-Singer “type”) is a more interesting goal whose
main obstruction is the lack of a sufficiently general notion of pull-back of
spinor fields. In order to solve this problem it will be necessary to construct
“relational categories” of spectral triples, via “spectral congruences” and/or
“spectral spans” following the lines already announced in the seminar slides [4].
We will return to these topics in forthcoming papers.

Finally, we observe that after the first draft of the present manuscript had
been already submitted for publication, a few other notable works on cate-
gorical non-commutative geometry appeared. In particular we mention the
recent paper by B. Mesland [23] where, in the setting of KK-theory, a notion of
Morita morphism between spectral triples is defined via very specific Connes’
correspondence bimodules.

Appendix A. List of categories of spectral triples

S the category whose objects are spectral triples (A,H, D) and whose
morphisms from (A,H, D) to (A′,H′, D′) are the pairs (ϕ,Φ), where
ϕ : A → A′ is a unital ∗-homomorphism and Φ : H → H′ is a (bounded)
linear map such that Φ(ax) = ϕ(a)Φ(x), Φ(Dξ) = D′(Φξ) for all a ∈ A,
x ∈ H and ξ ∈ Dom(D).

Sr the category consisting of real spectral triples (A,H, D, J) with mor-
phisms (ϕ,Φ) defined as for S but in addition intertwining the real
structures, i.e., ΦJ = J ′Φ.

Se the category consisting of even spectral triples (A,H, D,Γ) and mor-
phisms (ϕ,Φ) of triples such that, in addition, ΦΓ = Γ′Φ.

Sre defined as the category consisting of real, even spectral triples and mor-
phisms of triples intertwining both the real structure and the grading.

SI the subcategory of S with morphism (ϕ,Φ), with ϕ surjective and Φ
co-isometric. Similarly define SI• as a subcategory of S•, where •
stands for any of the choices r, e, re.

S m the category of spectral triples from S with arrows given by unital ∗-
epimorphisms ϕ : A → A′ such that dD(ϕ•(ω1), ϕ

•(ω2)) = dD′(ω1, ω2)
for all pure states ω1, ω2 of A′.

S 0 the category with the same objects of S obtained by quotienting the
arrows in S via the equivalence relation (ϕ1,Φ1) ≃ (ϕ2,Φ2) if and only
if ϕ1 = ϕ2. Similarly S 0

Ire is obtained from SIre as a quotient via the
same equivalence relation.

AS-S the full subcategory of S with objects the direct sums of Atiyah-Singer
spectral triples, i.e., those triples that satisfy the conditions of Connes’
reconstruction theorem.

AS-SIre is the full subcategory of SIre with objects the direct sums of Atiyah-
Singer spectral triples.

AS-S 0
Ire is the full subcategory of S 0

Ire with objects the direct sums of Atiyah-
Singer spectral triples.
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The suffix d (as in Sd, AS-Sd, AS-SIred or S m
d ) indicates the subcategory

consisting only of morphisms between triples of the same dimension.
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de Recherches Mathématiques, Montreal, 1999.

[3] N. Berline, E. Getzler, and M. Vergne, Heat Kernels and Dirac Operators, Springer-

Verlag, Berlin, 1992.
[4] P. Bertozzini, Categories of spectral geometries, Seminar Slides and Video of the Talk at

the “Categories Logic and Physics” workshop, Imperial College, London, 14 May 2008,
http://categorieslogicphysics.wikidot.com/people#paolobertozzini.

[5] P. Bertozzini, R. Conti, and W. Lewkeeratiyutkul, A category of spectral triples and
discrete groups with length function, Osaka J. Math. 43 (2006), no. 2, 327–350.

[6] , Non-commutative geometry, categories and quantum physics, East-West J.
Math. 2007 (2007), Special Vol., 213–259.

[7] A. Connes, Noncommutative Geometry, Academic Press, 1994.
[8] , Noncommutative geometry and reality, J. Math. Phys. 36 (1995), no. 11, 6194–

6231.
[9] , Gravity coupled with matter and the foundation of non-commutative geometry,

Comm. Math. Phys. 182 (1996), no. 1, 155–176.
[10] , Brisure de symétrie spontanée et géométrie du pont de vue spectral, J. Geom.
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