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REFINEMENT RINGS, EXCHANGE PROPERTY AND

COMPARABILITY

Chaoling Huang

Abstract. We introduce the notion of refinement rings, and generalize
some comparability properties of regular rings to the setting of refinement
rings.

Introduction

Recall that a monoid (M, +, 0) is a nonempty setM with a binary operation
+ which is associative and which has an identity 0 such that a = a+0 = 0+ a
for all a ∈ M. Let R be an associative ring with identity. Let FP (R) denote the
category of finitely generated projective right R-modules. Let V (R) = {[A]| [A]
is the class of R-modules isomorphic to A, A ∈ FP (R)} . Define [A] + [B] =
[A⊕B] for [A], [B] ∈ V (R). Then V (R) is a commutative monoid. Recall that
a monoid M has refinement if for all a1, a2, b1, b2 ∈ M with a1+a2 = b1+ b2,
there exist c11, c12, c21, c22 ∈ M such that

a1 = c11 + c12, a2 = c21 + c22,

b1 = c11 + c21, b2 = c12 + c22.

Note that for a positive integer s, a monoid M is said to satisfy s-comparability
if for any a, b ∈ M, either a is a summand of sb, or b is a summand of sa. In
[8, p. 275], a von Neumann regular ring R is said to satisfy s-comparability
in case for any x, y ∈ R, either xR is isomorphic to a summand of s(yR), or
yR is isomorphic to a summand of s(xR). For the regular ring R, R satisfies
s-comparability if and only if V (R) satisfies s-comparability. A monoid M is
said to be separative if for any a, b ∈ M, a + a = a + b = b + b implies that
a = b. On the other hand, R is said to be separative if the following condition
holds for all A, B ∈ FP (R):

A⊕A ∼= A⊕B ∼= B ⊕B ⇒ A ∼= B.
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It is obvious that R is separative if and only if V (R) is separative. It was
proved that a conical (x + y = 0 implies that x = y = 0 for any x, y ∈ M)
refinement monoid M satisfying s-comparability is separative [14, Theorem
1.9]. For the ring theory, we know that any exchange ring (see the following
definition) satisfying s-comparability is separative [14, Theorem 2.2].

For any right R-module M , Crawley and Jónsson [7] called M to have the
exchange property if for every right R-module A and any two decompositions
of A,

A = M ′ ⊕N = ⊕i∈IAi,

where M ′ ∼= M , there are submodules A′
i ⊆ Ai such that A = M ′ ⊕ (⊕i∈IA

′
i).

It follows from the modular law that A′
i must be a direct summand of Ai for all

i. Warfield [15] called a ring R an exchange ring if R has the exchange property
as a right R-module. He proved that this definition is left-right symmetric [15,
Corollary 2]. Many classes of rings belong to this class of rings, for instance,
local rings, von Neumann regular rings, semiperfect rings and strongly π-regular
rings, etc.

The notion of almost comparability for regular rings was first introduced
by Ara and Goodearl [2], for giving an alternative proof of the outstanding
O’Meara’s Theorem: directly finite simple regular rings with weak comparabil-
ity are unit-regular. It was proved that for a regular ring R, R satisfies almost
comparability if and only if every finitely generated projective R-module sat-
isfies almost comparability [12, Theorem 1.9], and that almost comparability
is Morita invariant [12, Theorem 1.11]. O’Meara first introduced the notion of
weak comparability, and proved that simple directly finite regular rings with
weak comparability must be unit-regular [8, Open Problem 3]. Many authors
studied regular rings with weak comparability [6, 10, 11]. For the regular ring
R with weak comparability, it was proved [11, Theorem 1.6] that A⊕C ≺ B⊕C
implies A ≺ B for any finitely generated projective R-modules A, B and C with
B ̸= 0, and was proved [11, Theorem 1.8] that nA ≺ nB implies A ≺ B for
any positive integer n and any finitely generated projective R-modules A and
B. In this note we define the notion of refinement rings, and give some gen-
eralizations of comparability from regular rings to refinement rings, especially
exchange rings.

Throughout this note, R is an associative ring with identity and R-modules
are unitary right R-modules.

1. Refinement rings with almost comparability

Notation 1.1. For two R-modules M and N , we use M ≲⊕ N (respectively
M ≲ N) to denote thatM is isomorphic to a direct summand ofN (respectively
M is isomorphic to a submodule of N), and M ≺⊕ N (respectively M ≺ N)
to denote that M is isomorphic to a proper direct summand of N (respectively
M is isomorphic to a proper submodule of N). Let M and N be finitely
generated projective R-modules. We write M ≲a N to mean that for any
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nonzero principal right ideal C of R, M ≲⊕ N ⊕ C, and M ≺a N to mean
that for any nonzero principal right ideal C of R, M ≺⊕ N ⊕ C. Other basic
notations can be found in [8].

It is well-known that the concepts of almost comparability and s-comparabi-
lity were defined over regular rings originally. Since we consider more generally
the case, we give the following definition.

Definition 1.2. A ring R is said to satisfy almost comparability, if for x, y ∈ R
such that xR, yR ≲⊕ R, either xR ≲a yR or yR ≲a xR. A finitely gener-
ated projective R-module P satisfies almost comparability, if for any direct
summands A, B of P either A ≲a B or B ≲a A. Similarly, we can define
the strictly almost comparability of R if xR ≺a yR or yR ≺a xR, and strictly
almost comparability of P if A ≺a B or B ≺a A. Clearly, almost comparability
for modules is inherited by direct summands, and R satisfies almost compara-
bility if and only if so does the R-module RR. For a positive integer s, R is said
to satisfy s-comparability if, for any right ideals A, B such that A, B ≲⊕ R,
either A ≲⊕ sB or B ≲⊕ sA. It is clear that almost comparability implies 2-
comparability. We say that the finitely generated projective R-modules satisfy
s-comparability if for any two finitely generated projective R-modules A and
B, either A ≲⊕ sB or B ≲⊕ sA.

Definition 1.3. Let R be a ring. If V (R) has refinement, i.e., for finitely
generated projective right R-modules A1, A2, B1, B2, A1 ⊕ A2

∼= B1 ⊕ B2

implies that there exist R-modules Cij , i, j = 1, 2 such that

Ai = Ci1 ⊕ Ci2, Bj
∼= C1j ⊕ C2j , i, j = 1, 2,

we call R a refinement ring.

It is convenient to record refinement with the following matrix:

B1 B2

A1

A2

(
C11 C12

C21 C22

)
.

By [4, Proposition 1.1], the class of exchange rings is included in the class
of the refinement rings. There are lots of refinement rings, not necessarily
exchange rings, for instance R = K[x1, . . . , xn], where K is a field. In fact, by
famous Quillen-Suslin Theorem, every finitely generated projective R-module is
free. Thus R is a refinement ring. Since the idempotent elements of R are those
of K, R is not exchange. We also argue that there exists a refinement ring with
almost comparability which is not von Neumann regular. Let An = M(C)2n
be the C∗-algebra of 2n × 2n complex matrices. Define hn : An → An+1 by
hn(a) = diag(a, a). Let A = limn→∞(An, hn) be the completion of A′/p−1(0)
which is called the inductive limit of the sequence (An, hn), where A

′ = {{an} ∈∏∞
n=1 An : an+1 = hn(an) for all sufficiently large n} and p(a) = limn→∞ ||an||

(see [13, p. 53]). A is an infinite dimensional simple unital AF -algebra (see
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[13, Example 1.10.8]). Thus, by [13, Corollary 3.2.2], A has real rank zero.
Hence A is a refinement ring by [6, Lemma 2.3]. Moreover, by [13, Chapter 3,
3.3 and 3.4], we know that A satisfies almost comparability. But A is not von
Neumann regular by [9, Theorem, p. 58].

Lemma 1.4. Let R be a refinement ring, and Ai, Bj be finitely generated
projective right R-modules for 1 ≤ i ≤ n, 1 ≤ j ≤ m, if A1⊕A2⊕· · ·⊕An ≲⊕
B1 ⊕B2 ⊕ · · · ⊕Bm, then

(1) there exist decompositions Ai = Ai1 ⊕ · · · ⊕Aim for i = 1, ..., n such that
A1j ⊕ · · · ⊕Anj ≲⊕ Bj for j = 1, . . . ,m.

(2) there exist decompositions Bj = Bj1 ⊕ · · · ⊕ Bjn for j = 1, . . . ,m such
that Ai

∼= B1i ⊕ · · · ⊕Bmi for i = 1, . . . , n− 1, and An ≲⊕ B1n ⊕ · · · ⊕Bmn.

The lemma below was obtained by Ara and Goodearl over regular rings, see
[2, Lemma 3.3].

Lemma 1.5. Let A, B be finitely generated projective right modules over a
refinement ring R. If A ≲⊕ nB for some positive integer n, then there is a
decomposition A = A1⊕A2⊕· · ·⊕An such that A1 ≲⊕ A2 ≲⊕ · · · ≲⊕ An ≲⊕ B.

Proof. We prove it by the induction. By Lemma 1.4, there is a decomposition
A = U ⊕ W , where U ≲⊕ (n − 1)B, and W ≲⊕ B. By the induction, there
is a chain C1 ⊆ C2 ⊆ · · · ⊆ Cn−1 of B such that U ∼= C1 ⊕ C2 ⊕ · · · ⊕ Cn−1.
Let D1, . . . , Dn be submodules of B such that D1 = C1, Ci = Ci−1 ⊕ Di for
i = 2, . . . , n−1 and B = Cn−1⊕Dn. Then B = D1⊕D2⊕· · ·⊕Dn. By Lemma
1.4, it follows from W ≲⊕ B that there are submodules Xi ⊆ Di, i = 1, . . . , n
such that W ∼= X1 ⊕ X2 ⊕ · · · ⊕ Xn. Hence A = U ⊕ W ∼= C1 ⊕ C2 ⊕ · · · ⊕
Cn−1 ⊕ X1 ⊕ X2 ⊕ · · · ⊕ Xn = X1 ⊕ (C1 ⊕ X2) ⊕ · · · ⊕ (Cn−1 ⊕ Xn), where
X1 ⊆ (C1 ⊕X2) ⊆ · · · ⊆ (Cn−1 ⊕Xn) ⊆ B. Set A1 = X1, Ai = (Ci−1 ⊕Xi)
for i = 2, . . . , n, as desired. □

Now we argue that s-comparability of refinement rings is inherited by finitely
generated projective right R-modules, which is similar to a result about regular
rings [5, Proposition 2.1]. So the idea of the following proposition is due to Ara,
O’Meara and Tyukavkin.

Proposition 1.6. Let R be a refinement ring satisfying s-comparability. Then
the finitely generated projective right R-modules also satisfy s-comparability.

Proof. Let A, B be finitely generated projective right R-modules. There is a
positive number n such that A, B ≲⊕ nR. We can prove the assertion by
induction on n. If n = 1, it is true since R satisfies s-comparability. Assume
that the assertion holds for n− 1 and suppose A, B ≲⊕ nR. Since R is a
refinement ring, by Lemma 1.4, we can write that A = A1⊕A2 and B = B1⊕B2

where Ai, Bi ≲⊕ (n− 1)R for i = 1, 2. By the induction, we have A1 ≲⊕ sB1

or B1 ≲⊕ sA1, and A2 ≲⊕ sB2 or B2 ≲⊕ sA2. If A1 ≲⊕ sB1 and A2 ≲⊕ sB2,
or B1 ≲⊕ sA1 and B2 ≲⊕ sA2, the assertion is obviously true. Now assume
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that A1 ≲⊕ sB1 and B2 ≲⊕ sA2. By Lemma 1.5, there are a direct summand
V of A1 such that V ≲⊕ B1 and A1 ≲⊕ sV and a direct summand U of B2 such
that U ≲⊕ A2 and B2 ≲⊕ sU . So B1

∼= V ⊕ C and A2
∼= U ⊕D where C and

D are finitely generated projective right R-modules. Since C, D ≲⊕ (n− 1)R,
by the induction, we get C ≲⊕ sD, or D ≲⊕ sC. If the former is true, then

B = B1 ⊕B2
∼= V ⊕ C ⊕B2

≲⊕ V ⊕ sD ⊕ sU
∼= V ⊕ sA2

≲⊕ sA1 ⊕ sA2

= sA.

Similarly, if the latter is true, then A ≲⊕ sB, as desired. □

In order to use easily later, we give the following result which is well-known
for regular rings [12, Lemma 1.2].

Proposition 1.7. Let R be a refinement ring satisfying almost comparability.
(1) If S is a simple projective R-module, then S ≲⊕ A for any nonzero

finitely generated projective R-module A.
(2) All simple projective R-modules are isomorphic.

Proof. (1) Since R satisfies almost comparability, it has 2-comparability, hence
S ≲⊕ 2A, or A ≲⊕ 2S, by Proposition 1.6. If S ≲⊕ 2A, since R has refinement,
S has decomposition S = S1 ⊕ S2 such that Si ≲⊕ A, i = 1, 2 by Lemma 1.4.
Since S is simple, S1 = 0, or S2 = 0. If S1 = 0, then S = S2 ≲⊕ A. If S2 = 0,
then S = S1 ≲⊕ A. If A ≲⊕ 2S, since R has refinement, A has decomposition
A = A1 ⊕ A2 such that A1 ≲⊕ A2 ≲⊕ S by Lemma 1.5. Since S is simple,
A1 = 0, or A2 = 0. If A2 = 0, then S = 0. If A1 = 0, then A = A2

∼= S. So we
have S ≲⊕ A.

(2) Let A, B be two simple projective R-modules, by (1), we have that
A ≲⊕ B. So A ∼= B as B is simple. □

Corollary 1.8. Let R be an exchange ring satisfying almost comparability.
The statements in Proposition 1.7 hold.

In 2007, Kutami [12, Proposition 1.3] proved that over any regular ring
R, almost comparability and strictly almost comparability of every finitely
generated projective R-module are equivalent. Actually, they coincide with
each other over any ring.

Proposition 1.9. Let R be a ring. For each finitely generated projective R-
module P , the following are equivalent:

(1) P has almost comparability;
(2) P has strictly almost comparability.

Proof. (2) ⇒ (1) is clear.
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(1) ⇒ (2) For any direct summands A and B of P , by hypothesis, A ≲a B or
B ≲a A. If A ≲a B, for any nonzero principal right ideal C of R, A ≲⊕ B⊕C.
If there is a nonzero principal right ideal D such that A ∼= B⊕D, then for any
nonzero principal right ideal E of R, we have B ≺⊕ A ≺⊕ A⊕E. In this case,
B ≺a A. Otherwise, A ≺a B. □

Lemma 1.10. Let R be a refinement ring satisfying almost comparability. And
let A, B be nonzero finitely generated projective R-modules. Then there exists
a nonzero principal right ideal X of R such that X ≲⊕ A, and X ≲⊕ B.

Proof. At first, we argue that every finitely generated projective R-module has
a nonzero cyclic submodule as a direct summand. Let P be a finitely generated
projective right R-module. There is another finitely generated projective right
R-module Q such that P ⊕Q ∼= Rn for some n. Since R is a refinement ring,
there are rightR-modules P1, . . . , Pn andQ1, . . . , Qn such that P ∼= P1⊕· · ·⊕Pn

and Q ∼= Q1 ⊕ · · · ⊕Qn and Pi ⊕Qi
∼= R for all i. Thus P has a nonzero cyclic

submodule isomorphic to, for example, P1 as a direct summand. Now we can
assume that both A and B are nonzero cyclic projective R-modules. Since R
satisfies almost comparability, A ≲a B, or B ≲a A. Without loss of generality,
we assume that A ≲a B. Thus A ≲⊕ 2B. Since R is a refinement ring, A has
a decomposition A = A1 ⊕ A2 such that A2 ≲⊕ A1 ≲⊕ B by Lemma 1.5. Let
X be a nonzero principal right ideal of R such that X ∼= A1. Then we have
X ≲⊕ A, and X ≲⊕ B. □

Corollary 1.11. Let R be an exchange ring satisfying almost comparability,
and let A and B be nonzero finitely generated projective right R-modules. Then
there exists a nonzero principal right ideal X of R such that X ≲⊕ A, and
X ≲⊕ B.

Lemma 1.12 ([14, Theorem 1.9]). Let R be a refinement ring satisfying s-
comparability. Then R is separative.

The following lemma for regular rings is first proved by Kutami [12, Lemma
1.7]. For the readers’ convenience, we prove it here.

Lemma 1.13. Let R be a refinement ring and assume that nR satisfies almost
comparability for some positive integer n. Let A, B, C, D be finitely generated
projective R-modules isomorphic to direct summands of nR. If A ≺a C and
B ≺a D, then A⊕B ≺a C ⊕D.

Proof. We may assume that A ̸= 0. Let X be any nonzero principal right ideal
of R. Since A ≺a C, we have A ≺⊕ C ⊕X. Hence there is a nonzero finitely
generated projective R-module Y such that A⊕ Y ∼= C ⊕X. By Lemma 1.10,
since R satisfies almost comparability, we get a nonzero principal right ideal Y ∗

of R such that Y ∗ ≲⊕ Y , and Y ∗ ≲⊕ A. Further, we have that B ≺⊕ D ⊕ Y ∗

as B ≺a D. Thus

A⊕B ⊕ Y ∗ ≲⊕ A⊕B ⊕ Y ∼= B ⊕ C ⊕X ≺⊕ C ⊕X ⊕D ⊕ Y ∗.
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Since R is separative by Lemma 1.12, and Y ∗ ≲⊕ A and Y ∗ ≲⊕ Y ≲⊕ C ⊕X,
we have that A⊕B ≺⊕ C ⊕X ⊕D by [3, Lemma 2.1], i.e., A⊕B ≺a C ⊕D,
as desired. □
Corollary 1.14. Let R be an exchange ring satisfying almost comparability,
and let A and B be nonzero finitely generated projective right R-modules. If
A ≺a C and B ≺a D, then A⊕B ≺a C ⊕D.

Proof. By [3, Proposition 1.2], R is a refinement ring. From Lemma 1.13, the
assertion is true. □
Theorem 1.15. Let R be a refinement ring, and assume that nR satisfies
almost comparability for some positive integer n. Let A, B, C, D be finitely
generated projective R-modules isomorphic to direct summands of nR. If A ≺a

C and D ≺a B, then A⊕B ≺a C ⊕D or C ⊕D ≺a A⊕B.

Proof. (1) If A = C = 0 or B = D = 0, then the result obviously holds.
(2) If A = D = 0, either B ≺a C or C ≺a B by the hypothesis of almost

comparability of nRR, as desired. Similarly, the result also holds in case B =
C = 0.

(3) Either A ̸= 0 or B ̸= 0, and either C ̸= 0 or D ̸= 0. We consider the
following four cases:

Case 1. B ≺⊕ nRR and C ≺⊕ nRR;
Case 2. B ∼= nRR and C ∼= nRR;
Case 3. B ≺⊕ nRR and C ∼= nRR;
Case 4. B ∼= nRR and C ≺⊕ nRR.

Case 1. There exist nonzero finitely generated projective R-modules E and
F such that B ⊕E ∼= nRR and C ⊕ F ∼= nRR. Since A ≺a C and D ≺a B, by
Lemma 1.10, we can take a nonzero principal right ideal X of R such that X
is isomorphic to a direct summand of A, C, E, and F , and hence A ≺⊕ C⊕X
and D ≺⊕ B ⊕ X. So, there exist Y and Z such that A ⊕ Y ∼= C ⊕ X and
D⊕Z ∼= B⊕X. It follows from X ≲⊕ F and X ≲⊕ E that C⊕X ≲⊕ nRR and
B ⊕X ≲⊕ nRR. Hence Y and Z are finitely generated projective R-modules
which are isomorphic to direct summands of nRR. By the hypothesis of almost
comparability of nRR, we have that either Y ≺a Z or Z ≺a Y . Assume that
Y ≺a Z. Then, C⊕X⊕D ∼= A⊕D⊕Y ≺a A⊕D⊕Z ∼= A⊕B⊕X. Note that
X ≲⊕ A and X ≲⊕ C, as R is separative by Lemma 1.12, then C⊕D ≺a A⊕B
by [3, Lemma 2.1].

Case 2. We have that B ∼= C. Since nRR satisfies almost comparability,
either A ≺a D orD ≺a A. Therefore, either A⊕B ≺a C⊕D or C⊕D ≺a A⊕B.

Case 3. If A ∼= nRR, then D ≺a B implies C ⊕ D ≺a A ⊕ B, as desired.
Therefore, we can assume that A ≺⊕ nRR. There exist nonzero finitely gener-
ated projective R-modules X and C∗ such that C = X ⊕ C∗, where X ∼= A.
Since D ≺a B and B ≺⊕ nRR, by Lemma 1.10, there exists a nonzero principal
right idealX∗ of R such thatX∗ ≲⊕ X, X∗ ≲⊕ A, andD ≲⊕ B⊕X∗ ≲⊕ nRR.
Thus, we have a nonzero finitely generated projective R-module Z such that
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D⊕Z ∼= B⊕X∗. Set Y = X∗⊕C∗, so Y ≲⊕ nRR and Z ≲⊕ nRR. Since nRR

satisfies almost comparability, either Y ≺a Z or Z ≺a Y . Assume that Y ≺a Z.
Then C⊕D⊕X∗ ∼= X⊕D⊕C∗⊕X∗ ∼= A⊕D⊕Y ≺a A⊕D⊕Z ∼= A⊕B⊕X∗.
Since R is separative, and X∗ ≲⊕ C and X∗ ≲⊕ A, we see that C⊕D ≺a A⊕B
by [3, Lemma 2.1].

Case 4. The same as the proof of the case 3. □
Corollary 1.16. Let R be an exchange ring, and assume that nR satisfies
almost comparability for some positive integer n. Let A, B, C, D be finitely
generated projective R-modules isomorphic to direct summands of nR. If A ≺a

C and D ≺a B, then A⊕B ≺a C ⊕D or C ⊕D ≺a A⊕B.

Theorem 1.17. Let R be a refinement ring. Then the following conditions
are equivalent:

(1) R satisfies almost comparability;
(2) Every finitely generated projective R-module satisfies almost comparabi-

lity;
(3) nRR satisfies almost comparability for all positive integers n;
(4) nRR satisfies almost comparability for some positive integer n.

Proof. (3) ⇒ (2) ⇒ (4) ⇒ (1) are clear.
(1) ⇒ (3). Assume that R satisfies almost comparability. We shall prove

(3) by using the induction on n. We assume that (n − 1)RR satisfies almost
comparability, and let V and W be any direct summands of nRR. Then there
exist decompositions V = A ⊕ B and W = C ⊕ D such that all A, B, C,
and D are isomorphic to direct summands of (n − 1)RR. From Lemma 1.13
and Theorem 1.15, we see that either V ≺a W or W ≺a V . Therefore, nRR

satisfies almost comparability. □
Proposition 1.18. Let M be a finitely generated projective R-module over a
refinement ring R, and set S = EndR(M). Then M satisfies almost compara-
bility if and only if so does S as an S-module.

Proof. ⇒ LetA, B be summands of S. By [1, Lemma 29.4], A⊗SM , B⊗SM are
summands of MR. Since M satisfies almost comparability, A⊗SM ≲a B⊗SM ,
or B ⊗s M ≲a A ⊗S M . Assume that A ⊗S M ≲a B ⊗S M . For any nonzero
principal right ideal C ≲⊕ S, we have A⊗SM ≲⊕ (B⊗SM)⊕(C⊗SM). Thus
there is a right R-module X such that (A⊗S M)⊕X ∼= (B⊗S M)⊕ (C⊗S M).
Hence HomR(M, (A⊗SM)⊕X) ∼= HomR(M, (B⊗SM)⊕(C⊗SM)). That is,
HomR(M, A⊗SM)⊕HomR(M, X) ∼= HomR(M, B⊗SM)⊕HomR(M, C⊗S

M). Thus by using [1, Lemma 29.4] again, we have that A⊕HomR(M, X) ∼=
B ⊕ C, i.e., A ≺a B.

⇐ The same as the above. □
Theorem 1.19. Let R be a refinement ring. The following conditions are
equivalent:

(1) R satisfies almost comparability;
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(2) For each finitely generated projective R-module P , EndR(P ) satisfies
almost comparability;

(3) Every ring S which is Morita equivalent to R satisfies almost comparabi-
lity;

(4) For all positive integers n, Mn(R) satisfies almost comparability;
(5) There exists a positive integer n such that Mn(R) satisfies almost com-

parability.

Proof. (1) ⇔ (2) By Theorem 1.17, and Proposition 1.18, R satisfies almost
comparability if and only if every finitely generated projective R-module P
satisfies almost comparability, if and only if EndR(P ) satisfies almost compa-
rability.

(1) ⇔ (3) Let S be a ring which is Morita equivalent to R, and let F and
G be inverse equivalences of the categories of R-modules and S-modules. By
Theorem 1.17, R satisfies almost comparability if and only if every finitely
generated projective R-module P satisfies almost comparability, and if and
only if F (P ) satisfies almost comparability, and if and only if S satisfies almost
comparability.

(1) ⇔ (4), (1) ⇔ (5) Since R is Morita equivalent to Mn(R), the assertions
are true by (1) ⇔ (3). □

We remark that Theorems 1.15, 1.17 and 1.19 are motivated by [12, Pro-
postion 1.8, Thereom 1.9 and Thereom 1.11], respectively. The assertions of
Theorem 1.17, Proposition 1.18 and Theorem 1.19 are true if the ring R is an
exchange ring, since any exchange ring is a refinement ring by [3, Proposition
1.2].

2. Cancellation property of refinement rings

Recall that a module M is called directly finite if M is not isomorphic to any
proper direct summand of itself, otherwise, M is called directly infinite. A ring
R is said to be directly finite provided RR is a directly finite module. R is called
stably finite if all finitely generated projective R-modules are directly finite. It
is well-known that for some positive integer s refinement rings satisfying s-
comparability have cancellation of separativity [14, Theorem 1.9], and that
directly finite refinement rings satisfying s-comparability have cancellation of
strong separativity [14, Corollary 1.11]. In [12, Proposition 2.1], Kutami proved
that for any regular ring satisfying almost comparability A ⊕ C ≺⊕ B ⊕ C
implies that A ≺⊕ B for any nonzero finitely generated directly finite projective
R-modules A, B, C. We consider the similar property of refinement rings. In
order to do this, we need the following lemma which is well-known for regular
rings.

Lemma 2.1. Let R be a directly finite refinement ring satisfying s-comparability
for some positive integer s. Then R is stably finite.
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Proof. Since R is a refinement ring satisfying s-comparability, by [14, Theorem
1.9], R is separative. Since R is directly finite, then by [3, Proposition 2.3] R
is stably finite. □
Theorem 2.2. Let R be a directly finite refinement ring satisfying almost
comparability. Then A⊕C⊕X ∼= B⊕C implies that A ≺⊕ B for any nonzero
finitely generated projective R-modules A, B, C and any simple projective R-
module X.

Proof. At first, note that R is stably finite by Lemma 2.1. Since R satisfies
almost comparability, by Proposition 1.7, X ≲⊕ A. Let X ⊕A∗ ∼= A for some
finitely generated projective R-module A∗. So A∗ ⊕ C ⊕ 2X ∼= B ⊕ C. By
Lemma 1.10, there is a nonzero principal right ideal X∗ of R such that X∗ ≲⊕
X, A∗ and B. Because R satisfies almost comparability, by Theorem 1.17 and
Proposition 1.9, either B ≺a A∗ ⊕ X∗ or A∗ ⊕ X∗ ≺a B. If B ≺a A∗ ⊕ X∗,
then A∗ ⊕C ⊕X ⊕X∗ ≲⊕ A∗ ⊕C ⊕ 2X ∼= B ⊕C ≺ A∗ ⊕C ⊕X∗ ⊕X, which
contradicts the direct finiteness of A∗⊕C⊕X∗⊕X, since R is stably finite. So
we have A∗ ⊕X∗ ≺a B. And then A∗ ⊕X∗ ≺⊕ B ⊕X∗. Since R is separative
by [14, Theorem 1.9] and X∗ ≲⊕ A∗, B, we have A∗ ≺⊕ B by [3, Lemma 2.1].
Let A∗ ⊕ Y ∼= B for some nonzero finitely generated projective R-module Y .
By Proposition 1.7, we have X ≲⊕ Y . Thus A ∼= X ⊕ A∗ ≲⊕ A∗ ⊕ Y ∼= B.
If A ∼= B, it follows from A ⊕ C ⊕ X ∼= B ⊕ C that B ⊕ C ⊕ X ∼= B ⊕ C,
which contradicts the direct finiteness of B ⊕ C, since R is stably finite. Thus
A ≺⊕ B. □

Recall that a ring has cancellation of the strict unperforation property pro-
vided that nA ≺⊕ nB implies A ≺⊕ B for any finitely generated projective
R-modules A and B. Ara et al. [5, Example 4.11] showed that unit-regular
rings with 2-comparability do not necessarily have cancellation of the strictly
unperforation property. But some directly finite refinement rings satisfying
almost comparability have the cancellation property (Theorem 2.4).

Lemma 2.3. Let R be a refinement ring satisfying almost comparability with
a simple right ideal S ≲⊕ R. If A ≺a B, then A ≲⊕ B for any nonzero finitely
generated projective R-modules A and B.

Proof. By Proposition 1.7, S ≲⊕ A and S ≲⊕ B. Let A ∼= S⊕A∗, B ∼= S⊕B∗

for some finitely generated projective R-modules A∗ and B∗. If A∗ = 0, it is
clear that A ≲⊕ B. So we may assume that A∗ ̸= 0. Note that A ≺a B, then
we have S ⊕ A∗ ∼= A ≺⊕ S ⊕ B. Since R is separative by [14, Theorem 1.9]
and S ≲⊕ A and S ≲⊕ B, by [3, Lemma 2.1], we have that A∗ ≺⊕ B. Let
B ∼= A∗ ⊕ X for some nonzero finitely generated projective R-module X. So
A ∼= S ⊕A∗ ≲⊕ A∗ ⊕X ∼= B, i.e., A ≲⊕ B. □

We remark that there are plenty of examples of rings which have a simple
right ideal as a direct summand but which are not regular. For example, if V
is an infinite dimensional vector space over a field, E is the ring of all linear



REFINEMENT RINGS, EXCHANGE PROPERTY AND COMPARABILITY 465

transformations on V , and J is the set of linear transformations in E with
finite rank (i.e., having finite dimensional image), then any subring R of E
which contains J satisfies the conditions. The author thanks K. R. Goodearl
for his giving the example.

Theorem 2.4. Let R be a directly finite refinement ring satisfying almost
comparability with a simple right ideal S ≲⊕ R. For any two nonzero finitely
generated projective R-modules A and B and positive integer n, nA ≺⊕ nB
implies A ≺a B.

Proof. Since R satisfies almost comparability, either A ≺a B or B ≺a A, by
Theorem 1.17 and Proposition 1.9. Assume that the latter is true. By Lemma
2.3, B ≲⊕ A. Let B⊕C ∼= A for some finitely generated projective R-module C.
So nB⊕nC ∼= nA. Since nA ≺⊕ nB, we have nA⊕D ∼= nB for some nonzero
finitely generated projective R-module D. Therefore, nA ⊕ D ⊕ nC ∼= nA,
which contradicts the direct finiteness of nA, since R is stably finite. □

Recall that a ring R is said to satisfy weak comparability if for each nonzero
x ∈ R, there is n = n(x) such that n(yR) ≲⊕ R implies that yR ≲⊕ xR
for all y ∈ R. There exists a non-simple directly infinite refinement ring with
both 1-comparability (hence almost comparability) and weak comparability
[11, p. 3145]. For the cancellation property of special case of exchange rings
with weak comparability, we have the following results.

Theorem 2.5. Let R be an exchange ring with weak comparability. Then
A⊕C ≲⊕ B ⊕C implies A ≲⊕ B for any nonzero finitely generated projective
R-modules A, B and C with B directly infinite.

Proof. By [15, Theorem 1], we may assume that C is cyclic. Since B is directly
infinite, there is a nonzero cyclic projective R-module W such that B⊕W ≲⊕
B. Since R satisfies weak comparability, there is a positive integer m such
that mX ≲⊕ R implies that X ≲⊕ W for any cyclic projective R-module X.
Since A ⊕ C ≲⊕ B ⊕ C, we have a decomposition B ⊕ C = A′ ⊕ C ′ ⊕ D for
some projective R-modules A′, C ′ and D such that A′ ∼= A, C ′ ∼= C. Let f
be the isomorphism from C to C ′. Since R is an exchange ring, the finitely
generated projective R-module A′ has the exchange property. Thus there exist
decompositions B = B1⊕B∗

1 and C = C1⊕C∗
1 such that B⊕C = A′⊕B∗

1⊕C∗
1 .

And so A′ ∼= B1 ⊕ C1. Since A′ ⊕ fC1 is the direct summand of B ⊕ C, it has
the exchange property. Thus there are decompositions B∗

1 = B2 ⊕ B∗
2 and

C∗
1 = C2 ⊕ C∗

2 such that B ⊕ C = A′ ⊕ fC1 ⊕ B∗
2 ⊕ C∗

2 . So fC1
∼= B2 ⊕ C2.

Since C1∩C2 = 0, we have that A′⊕fC1⊕fC2 is a direct summand of B⊕C.
Continuing the above procedure, we have decompositions B∗

n = Bn+1 ⊕ B∗
n+1

and C∗
n = Cn+1⊕C∗

n+1 such that B⊕C = A′⊕fC1⊕· · ·⊕fCn⊕B∗
n+1⊕C∗

n+1

and fCn
∼= Bn+1 ⊕ Cn+1. If Ck = 0 for some positive integer k, we have that

A ∼= A′ ∼= B1⊕C1
∼= B1⊕fC1

∼= B1⊕B2⊕C2
∼= · · · ∼= B1⊕B2⊕· · ·⊕Bk−1⊕

Ck−1
∼= B1 ⊕ B2 ⊕ · · · ⊕ Bk ≤⊕ B. If Cn ̸= 0 for all positive integers n, since
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Cm ≲⊕ · · · ≲⊕ C1 ≤⊕ C, we have that mCm ≲⊕ C ≲⊕ R, and so Cm ≲⊕ W .
Thus we have that

A ∼= A′ ∼= B1 ⊕ C1
∼= B1 ⊕ fC1

∼= B1 ⊕B2 ⊕ C2

∼= · · · ∼= B1 ⊕B2 ⊕ · · · ⊕Bm ⊕ Cm

≲⊕ B1 ⊕B2 ⊕ · · · ⊕Bm ⊕W

⩽⊕ B ⊕W ≲⊕ B,

and we complete the proof. □
Theorem 2.6. Let R be an exchange ring with weak comparability. Then
A⊕C ≺⊕ B ⊕C implies A ≺⊕ B for any nonzero finitely generated projective
R-modules A, B and C, if C has the property that ℵ0X ̸≲⊕ C for any nonzero
finitely generated projective R-module X.

Proof. By [15, Theorem 1], we may assume that C is cyclic. Since A ⊕ C ≺⊕
B⊕C, we have a decomposition B⊕C = A′⊕C ′⊕D for some nonzero projective
R-modules A′, C ′ and D such that A′ ∼= A, C ′ ∼= C. Let f be the isomorphism
from C to C ′. Since R is an exchange ring, the finitely generated projective
R-module D has the exchange property. Thus there exist decompositions B =
B1⊕B∗

1 and C = C1⊕C∗
1 such that B⊕C = D⊕B∗

1⊕C∗
1 . And so D ∼= B1⊕C1.

SinceD⊕fC1 is isomorphic to the direct summand of B⊕C, it has the exchange
property. Thus there are decompositions B∗

1 = B2⊕B∗
2 and C∗

1 = C2⊕C∗
2 such

that B⊕C = D⊕fC1⊕B∗
2 ⊕C∗

2 . So C1
∼= fC1

∼= B2⊕C2. Since C1∩C2 = 0,
we have that D ⊕ fC1 ⊕ fC2 is isomorphic to a direct summand of B ⊕ C.
Continuing the above procedure, we have decompositions B∗

n = Bn+1 ⊕ B∗
n+1

and C∗
n = Cn+1⊕C∗

n+1 such that B⊕C = D⊕fC1⊕· · ·⊕fCn⊕B∗
n+1⊕C∗

n+1

and Cn
∼= fCn

∼= Bn+1⊕Cn+1 for each n = 1, 2, . . .. We claim that Bk ̸= 0 for
some positive integer k. In fact, if Bk = 0 for all k, 0 ̸= ℵ0D ∼= C1⊕C2⊕· · · ≤⊕
C, which contradicts the hypothesis. Since B ⊕ C = A′ ⊕ C ′ ⊕ D, we have
that A′ ⊕ fC∗

k ⊕ (D ⊕ fC1 ⊕ · · · ⊕ fCk−1) ≤⊕ A′ ⊕ fC1 ⊕ · · · ⊕ fCk−1 ⊕
fCk ⊕ fC∗

k ⊕ D = B∗
k ⊕ C∗

k ⊕ (D ⊕ fC1 ⊕ · · · ⊕ fCk−1). Since A′ ⊕ fC∗
k is

a finitely generated projective R-module, according to the above procedure,
there exist decompositions B∗

k = Bk1 ⊕ B∗
k1,. . . , B

∗
kn = Bk,n+1 ⊕ B∗

k,n+1 and

C∗
k = Ck1 ⊕ C∗

k1,. . . , C
∗
kn = Ck,n+1 ⊕ C∗

k,n+1 such that A′ ∼= Bk1 ⊕ Ck1 and
Ckn

∼= Bk,n+1⊕Ck,n+1. Then we have that nCkn ≲⊕ C ≲⊕ R for each positive
integer n. If Ckm = 0 for some m, then

A ∼= A′ ∼= Bk1 ⊕ Ck1
∼= Bk1 ⊕Bk2 ⊕ Ck2

∼= · · · ∼= Bk1 ⊕ · · · ⊕Bk,m−1 ⊕ Ck,m−1

∼= Bk1 ⊕ · · · ⊕Bkm

≺⊕ Bk ⊕Bk1 ⊕ · · · ⊕Bkm

⩽⊕ B.

If Ckm ̸= 0 for all positive integers m. Since Bk ̸= 0, there is a nonzero cyclic
submodule Z of Bk as a direct summand. Thus using the weak comparability
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for R, we have that Ckl ≲⊕ Z ≤⊕ Bk for some positive integer l. We claim
that Bks ̸= 0 for some positive integer s > l. In fact, if Bks = 0 for all positive
integers s > l, then Ckl

∼= Ck,l+1
∼= · · · and Ckl ⊕ Ck,l+1 ⊕ · · · ⩽⊕ C, so

ℵ0Ckl ≤⊕ C, which contradicts the hypothesis. Thus

A ∼= A′ ∼= Bk1 ⊕ Ck1
∼= Bk1 ⊕Bk2 ⊕ Ck2

∼= · · · ∼= Bk1 ⊕ · · · ⊕Bk,l ⊕ Ck,l

≺⊕ Bk ⊕Bk1 ⊕ · · · ⊕Bkl ⊕Bks

≤⊕ B. □

Remark 2.7. (1) In Kutami’s 2005 paper, he proved that for a directly infinite
regular ring R with weak comparability, A⊕C ≲⊕ B ⊕C implies A ≺⊕ B for
any nonzero finitely generated projective R-modules A, B and C with B ̸= 0,
see [11, Proposition 1.5]. So the idea of Theorem 2.5 is due to Kutami.

(2) Recall that a module M is said to have finite uniform dimension if it
contains no infinite direct sum of nonzero submodules. It is clear that any mod-
ule with finite uniform dimension (hence any uniform module and Noetherian
module) has the hypothesis of Theorem 2.6.

(3) In 2003, Kutami proved that for a regular ring R with weak compara-
bility, A ⊕ C ≺⊕ B ⊕ C implies A ≺⊕ B for any finitely generated projective
R-modules A, B and C with C directly finite, see [10, Theorem 2.2]. Theorem
2.6 is motivated by [10, Theorem 2.2].

We end this note by raising the following questions:

Question 2.8. (1) Does there exist a refinement ring with almost compara-
bility which is not regular and without strictly unperforated property?

(2) Does there exist a refinement ring with weak comparability that is not
a regular ring without almost comparability?
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