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A DIFFERENTIAL EQUATION FOR MULTIPLE

BESSEL POLYNOMIALS WITH RAISING AND

LOWERING OPERATORS

Jin Ok Baek and Dong Won Lee

Abstract. In this paper, we first find a raising operator and a lowering
operator for multiple Bessel polynomials and then give a differential equa-
tion having multiple Bessel polynomials as solutions. Thus the differential

equations were found for all multiple orthogonal polynomials that are or-
thogonal with respect to the same type of classical weights introduced by
Aptekarev et al.

1. Introduction

Let N0 := N ∪ {0}, r ≥ 2 be a fixed integer, and n⃗ = (n1, n2, . . . , nr) ∈ Nr
0

be a multi-index with |n⃗| = n1 + n2 + · · · + nr. A sequence {Pn⃗(x)}∞|n⃗|=0 of

polynomials is called a multiple orthogonal polynomial system (multiple OPS)
if

(i) deg(Pn⃗) = |n⃗|;
(ii) there exist r moment functionals σk (k = 1, 2, . . . , r) such that

⟨σk, x
jPn⃗(x)⟩ =

{
0 if j = 0, 1, 2, . . . , nk − 1,

̸= 0 if j = nk.

In this case, σk’s are called orthogonalizing moment functionals of multiple
OPS {Pn⃗(x)}∞|n⃗|=0.

The multiple OPS have been used in rational approximation in nineteenth
century and recently applied in many fields such as number theory, rational
approximation, dynamical system, and random matrix theory. Many properties
of the multiple OPS are obtained as a generalization of ordinary orthogonal
polynomials. See references [2, 3, 15] and therein.

For the case of r = 2, third order differential equations were found for
multiple OPS’s whose orthogonalizing moment functionals consist of the same
type of classical moment functionals ([1]).
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More precisely, they established third order differential equations for the
following multiple OPS’s.

• The multiple Bessel polynomials {B(a⃗;b)
n⃗ (x)}, where ai − aj /∈ Z for

i ̸= j, whose orthogonalizing moment functional σk satisfies

(x2σk)
′ = [(ak + 2)x+ b]σk, k = 1, 2, . . . , r.

• The multiple Jacobi-Piñeiro polynomials {P (α⃗;α)
n⃗ (x)}, where α, αi >

−1, and αi−αj /∈ Z for i ̸= j, whose orthogonalizing moment functional
σk satisfies

(x(1− x)σk)
′ = [αk + 1− (αk + α+ 2)x]σk, k = 1, 2, . . . , r.

• The multiple Laguerre I polynomials {L(α⃗;β)
n⃗ (x)}, where αi > −1, β >

0, and αi−αj /∈ Z for i ̸= j, whose orthogonalizing moment functional
σk satisfies

(xσk)
′ = (αk + 1− βx)σk, k = 1, 2, . . . , r.

• The multiple Laguerre II polynomials {L(α;β⃗)
n⃗ (x)}, where α > −1, βi >

0, and βi ̸= βj for i ̸= j, whose orthogonalizing moment functional σk

satisfies

(xσk)
′ = (α+ 1− βkx)σk, k = 1, 2, . . . , r.

• The multiple Hermite polynomials {H(δ;⃗b)
n⃗ (x)}, where δ < 0, and bi ̸=

bj for i ̸= j, whose orthogonalizing moment functional σk satisfies

σ′
k = (δx+ bk)σk, k = 1, 2, . . . , r.

See Table 1 and Table 2 in [1] for details.

They obtained third order differential equations using Rodrigues’ formula
and combinatorial identities. In [12], differential equations for multiple Hermite
polynomials and multiple Laguerre polynomials were reconstructed using the
generating functions. Recently, Coussement and Van Assche [5] found again
the (r + 1)th order differential equations for multiple OPS’s, except multiple
Bessel polynomials, using lowering and raising operators.

In this paper, we first find a raising operator and a lowering operator for
multiple Bessel polynomials and then give a (r+1)th order differential equation
having multiple Bessel polynomials as solutions. Thus the differential equations
were found for all multiple OPS’s that are orthogonal with respect to the same
type of classical weights in [1].

2. Main results

Let’s denote the i-th standard unit vector by ei = (0, 0, . . . , 1, . . . , 0) and
e = (1, 1, . . . , 1) = e1 + e2 + · · · + er. Any linear functional σ on the space of
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polynomials is called a moment functional and denote its action on a polynomial
π by

⟨σ, π⟩.

For a moment functional σ and a polynomial α, we let σ′ and ασ be the
moment functionals defined by

⟨σ′, π⟩ = −⟨σ, π′⟩

and

⟨ασ, π⟩ = ⟨σ, απ⟩

for every polynomial π.
Note that any orthogonalizing weight function w defines a moment functional

σ by

(2.1) ⟨σ, xk⟩ =
∫
I

xkw(x)dx,

where I is an interval on the real line R. Due to Duran [6] for moment problem,
for any moment functional σ there exists a weight w in Schwartz space that
represent σ by the integration of the form (2.1).

The orthogonality for Bessel polynomials was well known by [8, 9] in complex
plane and later the real orthogonalizing weights were obtained in [7, 10, 14],
which gave an integral representation of the form (2.1) for the moment func-
tional of Bessel polynomials. Moreover, the orthgonalizing moment functional
σ of Bessel polynomials satisfies a functional equation of the form

(2.2) (x2σ)′ = [(a+ 2)x+ b]σ

and conversely any solution σ of (2.2) orthogonalizes the Bessel polynomials
when a+ 2 /∈ {0,−1,−2, . . .} ([4, 11, 16]). Hence, the multiple Bessel polyno-

mials {B(a⃗;b)
n⃗ (x)} is a sequence of polynomials such that

(i) deg(B
(a⃗;b)
n⃗ ) = |n⃗|;

(ii) for each i = 1, 2, . . . , r,

⟨σi, x
jB

(a⃗;b)
n⃗ (x)⟩ =

{
0 if j = 0, 1, 2, . . . , ni − 1,

̸= 0 if j = ni,

where each σi’s are the orthogonalizing moment functionals satisfying
the equation of the form (2.2).

Here we assumed that a⃗ = (a1, a2, . . . , ar) ∈ Rr, b ∈ R, ai+2 /∈ {0,−1,−2, . . .},
and ai − aj /∈ Z for i ̸= j.

From here on, we always assume that σi’s (i = 1, 2, . . . , r) are moment
functionals satisfying the functional equation of the form (2.2).
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Theorem 2.1. For the multiple Bessel polynomials {B(a⃗;b)
n⃗ (x)}, we have for

k = 1, 2, . . . , r,

x2 d

dx
B

(a⃗+e+ek;b)
n⃗ (x) + [(ak + 2)x+ b]B

(a⃗+e+ek;b)
n⃗ (x) = (|n⃗|+ ak + 2)B

(a⃗;b)
n⃗+ek

(x).

Proof. Let Bn⃗(x) = B
(a⃗+e+ek;b)
n⃗ (x) and π(x) = x2B′

n⃗(x)+[(ak+2)x+b]Bn⃗(x).
Since Bn⃗ is a monic polynomial of degree |n⃗|, π is a polynomial of degree
|n⃗| + 1 with leading coefficient |n⃗| + ak + 2. Since {Bn⃗(x)}∞|n⃗|=0 is orthogonal

with respect to multiple moment functionals (xσ1, xσ2, . . . , x
2σk, . . . , xσr), we

have by integration by parts that for i = k,

⟨σi, x
jπ(x)⟩ = ⟨σk, x

j [x2B′
n⃗(x) + ((ak + 2)x+ b)Bn⃗(x)]⟩

= ⟨[(ak + 2)x+ b]xjσk − (xj+2σk)
′, Bn⃗(x)⟩

= −j⟨xj+1σk, Bn⃗(x)⟩
= −j⟨x2σk, x

j−1Bn⃗(x)⟩ = 0, j = 0, 1, 2, . . . , ni

and for i ̸= k,

⟨σi, x
jπ(x)⟩ = ⟨σi, x

j [x2B′
n⃗(x) + ((ak + 2)x+ b)Bn⃗(x)]⟩

= ⟨[(ak + 2)x+ b]xjσi − (xj+2σi)
′, Bn⃗(x)⟩

= (ak − ai)⟨xj+1σi, Bn⃗(x)⟩ − j⟨xj+1σi, Bn⃗(x)⟩
= (ak − ai − j)⟨σi, x

j+1Bn⃗(x)⟩
= 0, j = 0, 1, 2, . . . , ni − 1.

Hence, ⟨σi, x
jπ(x)⟩ = 0 for j = 0, 1, 2, . . . , nk when i = k, and j = 0, 1, 2, . . .,

ni − 1 when i ̸= k. By the uniqueness of the multiple orthogonal polynomials,
we can write

π(x) = cnB
(a⃗;b)
n⃗+ek

(x),

where cn is a constant. Since B
(a⃗;b)
n⃗+ek

(x) is monic, by comparing the leading
coefficients, we obtain the result. □

If we define an operator Lak
by

Lak
[y](x) = x2 dy

dx
+ [(ak + 2)x+ b]y,

then Theorem 2.1 gives a raising operator

Lak
[B

(a⃗+e+ek;b)
n⃗ ](x) = (|n⃗|+ ak + 2)B

(a⃗;b)
n⃗+ek

(x).

In order to obtain a lowering operator, we need a lemma whose proof is quite
simple ([13]).

Lemma 2.2. Let C = [cij ]
r
i,j=1 be a matrix. If

cip − ciq = ϵpqcipciq and cpi − cqi = δpqcpicqi, i, p, q = 1, 2, . . . , r,
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then the determinant |C| of C is

|C| =

 r∏
i=1

r∏
j=1

cij

(r−1∏
q=1

r∏
p=q+1

ϵpqδpq

)
.

Proof. It can be inductively proved by row and column operations as following:∣∣∣∣∣∣∣∣∣
c11 c12 · · · c1r
c21 c22 · · · c2r
...

...
. . .

...
cr1 cr2 · · · crr

∣∣∣∣∣∣∣∣∣ =
∣∣∣∣∣∣∣∣∣
c11 c12 − c11 · · · c1r − c11
c21 c22 − c21 · · · c2r − c21
...

...
. . .

...
cr1 cr2 − cr1 · · · crr − cr1

∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣
c11 ϵ21c11c12 · · · ϵr1c11c1r
c21 ϵ21c21c22 · · · ϵr1c21c2r
...

...
. . .

...
cr1 ϵ21cr1cr2 · · · ϵr1cr1crr

∣∣∣∣∣∣∣∣∣
=

r∏
i=1

ci1

r∏
i=2

ϵi1

∣∣∣∣∣∣∣∣∣
1 c12 · · · c1r
1 c22 · · · c2r
...

...
. . .

...
1 cr2 · · · crr

∣∣∣∣∣∣∣∣∣
=

r∏
i=1

ci1

r∏
i=2

ϵi1

∣∣∣∣∣∣∣∣∣
1 c12 · · · c1r
0 δ21c12c22 · · · δ21c1rc2r
...

...
. . .

...
0 δr1c12cr2 · · · δr1c1rcrr

∣∣∣∣∣∣∣∣∣
=

(
r∏

i=1

ci1

) r∏
j=2

c1j

( r∏
i=2

ϵi1δi1

)∣∣∣∣∣∣∣∣∣
c22 c23 · · · c2r
c32 c33 · · · c3r
...

...
. . .

...
cr2 cr3 · · · crr

∣∣∣∣∣∣∣∣∣ .
□

Theorem 2.3. For the multiple Bessel polynomials {B(a⃗;b)
n⃗ (x)}, we have

(2.3)
d

dx
(B

(a⃗;b)
n⃗ (x)) =

r∑
k=1

dkB
(a⃗+e+ek;b)
n⃗−ek

(x),

where

dk =

∏r
p=1(np + ap − ak)

(|n⃗|+ ak + 1)
∏r−1

q=1,q ̸=k(ak − aq)
∏r

p=k+1(ap − ak)

×
r∑

j=1

(−1)k+j(nj + aj + 1)
∏r

q=1(nj + aj − aq)

(nj + aj − ak)
∏r−1

q=1,q ̸=j(nq − nj + aq − aj)
∏r

p=j+1(nj − np + aj − ap)
.

(2.4)
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In particular, if r = 2,

d

dx
(B(a1,a2;b)

n1,n2
(x)) =

n1(n2 + a2 − a1)

a2 − a1
B

(a1+2,a2+1;b)
n1−1,n2

(x)

− n2(n1 + a1 − a2)

a2 − a1
B

(a1+1,a2+2;b)
n1,n2−1 (x).

Proof. Let V be the space of polynomial π such that deg(π) = |n⃗| − 1 and

⟨σi, x
j+2π(x)⟩ = 0, j = 0, 1, 2, . . . , ni − 2, i = 1, 2, . . . , r.

By the orthogonality of
{
B

(a⃗+e+ek;b)
n⃗ (x)

}∞

|n⃗|=0
with respect to (xσ1, xσ2, . . .,

x2σk, . . . , xσr), it can be easily seen that

B
(a⃗+e+ek;b)
n⃗−ek

∈ V, k = 1, 2, . . . , r.

By the linearly independency of
{
B

(a⃗+e+ek;b)
n⃗−ek

}r

k=1
, any polynomial π in V

can be written by a linear combination of them. On the other hand, since
(xj+2σi)

′ = [(j + ai + 2)x+ b]xjσi, we have

⟨σi, x
j+2 d

dx
(B

(a⃗;b)
n⃗ (x))⟩ = −⟨σi, [(j + ai + 2)x+ b]xjB

(a⃗;b)
n⃗ (x)⟩

= 0, j = 0, 1, 2, . . . , ni − 2,

which implies d
dx (B

(a⃗;b)
n⃗ (x)) ∈ V . Hence, we have

(2.5)
d

dx

(
B

(a⃗;b)
n⃗ (x)

)
=

r∑
k=1

dkB
(a⃗+e+ek;b)
n⃗−ek

(x),

where dk’s are constants. In order to obtain dk, multiplying (2.5) by xni−1 and
then applying x2σi on both sides, we have

(2.6) ⟨σi, x
ni+1 d

dx
(B

(a⃗;b)
n⃗ (x))⟩ =

r∑
k=1

dk⟨σi, x
ni+1B

(a⃗+e+ek;b)
n⃗−ek

(x)⟩.

On the other hand, by the raising operator, by the orthogonality, and by the
moment equation, we obtain

⟨σi, x
ni+1B

(a⃗+e+ek;b)
n⃗−ek

(x)⟩

=
1

|n⃗|+ ai + 1
⟨σi, x

ni+1Lai+1[B
(a⃗+2e+ek+ei;b)
n⃗−ek−ei

](x)⟩

=
1

(|n⃗|+ ai + 1)

{
⟨σi, [(ai + 3)x+ b]xni+1B

(a⃗+2e+ek+ei;b)
n⃗−ek−ei

(x)⟩

− ⟨(xni+3σi)
′, B

(a⃗+2e+ek+ei;b)
n⃗−ek−ei

(x)⟩
}

= − ni

(|n⃗|+ ai + 1)
⟨σi, x

ni+2B
(a⃗+2e+ek+ei;b)
n⃗−ek−ei

(x)⟩

= − ni

(|n⃗|+ ai + 1)(|n⃗|+ a1 + 1)
⟨σi, x

ni+2La1+2[B
(a⃗+3e+e1+ek+ei;b)
n⃗−e1−ek−ei

](x)⟩
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= − ni

(|n⃗|+ ai + 1)(|n⃗|+ a1 + 1)

{
⟨σi, [(a1 + 4)x+ b]xni+2B

(a⃗+3e+e1+ek+ei;b)
n⃗−e1−ek−ei

(x)⟩

− ⟨(xni+4σi)
′, B

(a⃗+3e+e1+ek+ei;b)
n⃗−e1−ek−ei

(x)⟩
}

= − ni(a1 − ai − ni)

(|n⃗|+ ai + 1)(|n⃗|+ a1 + 1)
⟨σi, x

ni+3B
(a⃗+3e+e1+ek+ei;b)
n⃗−e1−ek−ei

(x)⟩.

Continuing the same process for the index from 1 to r, we obtain

(2.7) ⟨σi, x
ni+1B

(a⃗+e+ek;b)
n⃗−ek

(x)⟩ =

(
r∏

p=1

ap − ai − ni

|n⃗|+ ap + 1

)
|n⃗|+ ak + 1

ak − ai − ni
Ii,

where

Ii = ⟨σi, x
ni+rB

(a⃗+(r+1)e;b)
n⃗−e (x)⟩.

By the same method as above, we can easily see that

⟨σi, x
ni+1 d

dx
(B

(a⃗;b)
n⃗ (x))⟩ = − ⟨(xni+1σi)

′, B
(a⃗;b)
n⃗ (x)⟩

= − ⟨(x2σi)
′, xni−1B

(a⃗;b)
n⃗ (x)⟩

− (ni − 1)⟨σi, x
niB

(a⃗;b)
n⃗ (x)⟩

= − ⟨σi, [(ni + ai + 1)x+ b]xni−1B
(a⃗;b)
n⃗ (x)⟩

= − (ni + ai + 1)⟨σi, x
niB

(a⃗;b)
n⃗ (x)⟩

= − (ni + ai + 1)

(
r∏

p=1

ap − ai − ni

|n⃗|+ ap + 1

)
Ii.

(2.8)

Since Ii ̸= 0 by the orthogonality, substituting (2.7) and (2.8) into (2.6), we
have

(ni + ai + 1) =
r∑

k=1

dk
(|n⃗|+ ak + 1)

(ni + ai − ak)
(i = 1, 2, . . . , r)

which is equivalent to

Ad = h,

where A := [aik]
r
i,k=1 is the r × r matrix with

aik =
|n⃗|+ ak + 1

ni + ai − ak

and

d =


d1
d2
...
dr

 , h =


n1 + a1 + 1
n2 + a2 + 1

...
nr + ar + 1

 .
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By Lemma 2.2, we have

|A| =
{
∏r

i=1(|n⃗|+ ai + 1)}{
∏r−1

q=1

∏r
p=q+1(ap − aq)(nq − np + aq − ap)}∏r

q=1

∏r
p=1(np + ap − aq)

.

On the other hand, the determinant of the matrix replaced k-th column by h,
we obtain∣∣∣∣∣∣∣∣∣∣∣∣

|n⃗|+a1+1
n1

· · · (n1 + a1 + 1) · · · |n⃗|+ar+1
n1+a1−ar

|n⃗|+a1+1
n2+a2−a1

· · · (n2 + a2 + 1) · · · |n⃗|+ar+1
n2+a2−ar

...
. . .

... · · ·
...

|n⃗|+a1+1
nr+ar−a1

· · · (nr + ar + 1) · · · |n⃗|+ar+1
nr

∣∣∣∣∣∣∣∣∣∣∣∣
=

r∑
j=1

(−1)k+j |Cjk|,

where Cjk is the determinant of (j, k)-minor of A. More precisely, we obtain
by Lemma 2.2,

|Cjk| = (nj + aj + 1)
r∏

i=1,i̸=k

(|n⃗|+ ai + 1)

×

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1
n1

· · · 1
n1+a1−ak−1

1
n1+a1−ak+1

· · · 1
n1+a1−ar

1
n2+a2−a1

· · · 1
n2+a2−ak−1

1
n2+a2−ak+1

· · · 1
n2+a2−ar

...
. . .

...
...

. . .
...

1
nj−1+aj−1−a1

· · · 1
nj−1+aj−1−ak−1

1
nj−1+aj−1−ak+1

· · · 1
nj−1+aj−1−ar

1
nj+1+aj+1−a1

· · · 1
nj+1+aj+1−ak−1

1
nj+1+aj+1−ak+1

· · · 1
nj+1+aj+1−ar

...
. . .

...
...

. . .
...

1
nr+ar−a1

· · · 1
nr+ar−ak−1

1
nr+ar−ak+1

· · · 1
nr

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= (nj + aj + 1)

r∏
i=1,i̸=k

(|n⃗|+ ai + 1)

×
{
∏r−1

q=1,q ̸=k

∏r
p=q+1,p̸=k(ap − aq)}{

∏r−1
q=1,q ̸=j

∏r
p=q+1,p̸=j(nq − np + aq − ap)}∏r

q=1,q ̸=k

∏r
p=1,p̸=j(np + ap − aq)

.

By Cramer’s rule, we obtain dk = 1
|A|
∑r

j=1(−1)k+j |Cjk|, which is the result.

□

Combining the result of Theorem 2.1 and Theorem 2.3, we find a (r + 1)th
order differential equation of multiple Bessel polynomials.
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Theorem 2.4. The multiple Bessel polynomial {B(a⃗;b)
n⃗ (x)}∞|n⃗|=0 satisfies a (r+

1)th order differential equation

La1−r+1La2−r+2 · · ·Lar [y
′ ](x)

=
r∑

k=1

dk(|n⃗|+ ak + 1)La1−r+1 · · ·Lak−1−r+k−1Lak+1−r+k · · ·Lar−1[y](x),

(2.9)

where y = B
(a⃗;b)
n⃗ (x) and dk’s are the constants in (2.4).

Proof. Since

Laj
Lai+1[y] = x4y′′ + [(ai + aj + 7)x3 + 2bx2]y′

+ [(aiaj + 3ai + 3aj + 9)x2 + b(ai + aj + 5)x+ b2]y

= LaiLaj+1[y],

we have
La1−r+1La2−r+2 · · ·Lai−r+i · · ·Lar

= La1−r+1La2−r+2 · · ·Lai−1−r+i−1Lai+1−r+i · · ·Lar−1Lai .

Applying La1−r+1La2−r+2 · · ·Lar on (2.3) and Theorem 2.1, the conclusion
follows. □

When r = 2, the differential equation (2.9) becomes

La1−1La2 [y
′] = d1(|n⃗|+ a1 + 1)La2−1[y] + d2(|n⃗|+ a2 + 1)La1−1[y]

so that B
(a1,a2;b)
n1,n2 (x) satisfies

x4y′′′ + [(a1 + a2 + 5)x3 − 2bx2]y′′ + [{(a1 − n2 + 2)(a2 − n1 + 2)

− (n1 + n2)(n1 + n2 − 1)}x2 − (a1 + a2 + 3)bx+ b2]y′

− [(n1 + n2)(n1 + a1 + 1)(n2 + a2 + 1)x

− b{n1n2 + n1(n1 + a1 + 1) + n2(n2 + a2 + 1)}]y = 0,

which was already obtained in [1].
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[3] M. G. de Bruin, Simultaneous Padé approximation and orthogonality, Orthogonal poly-

nomials and applications (Bar-le-Duc, 1984), 74–83, Lecture Notes in Math., 1171,
Springer, Berlin, 1985.

[4] T. S. Chihara, An Introduction to Orthogonal Polynomials, Gordon and Breach, New
York, 1978.



454 JIN OK BAEK AND DONG WON LEE

[5] J. Coussement and W. Van Assche, Differential equations for multiple orthogonal poly-
nomials with respect to classical weights: raising and lowering operators, J. Phys. A 39
(2006), no. 13, 3311–3318.

[6] A. J. Duran, The Stieltjes moment problem for rapidly decreasing functions, Proc. Amer.

Math. Soc. 107 (1989), no. 3, 731–741.
[7] W. D. Evans, W. N. Everitt, K. H. Kwon, and L. L. Littlejohn, Real orthogonalizing

weights for Bessel polynomials, J. Comput. Appl. Math. 49 (1993), no. 1-3, 51–57.

[8] A. M. Krall, Orthogonal polynomials through moment generating functionals, SIAM J.
Math. Anal. 9 (1978), no. 4, 600–603.

[9] H. L. Krall and O. Frink, A new class of orthogonal polynomials: The Bessel polynomi-
als, Trans. Amer. Math. Soc. 65 (1949), 100–115.

[10] K. H. Kwon, S. S. Kim, and S. S. Han, Orthogonalizing weights of Tchebychev sets of
polynomials, Bull. London Math. Soc. 24 (1992), no. 4, 361–367.

[11] K. H. Kwon, D. W. Lee, and L. L. Littlejohn, Differential equations having orthogonal
polynomial solutions, J. Comput. Appl. Math. 80 (1997), no. 1, 1–16.

[12] D. W. Lee, Properties of multiple Hermite and multiple Laguerre polynomials by the
generating function, Integral Transforms Spec. Funct. 18 (2007), no. 11-12, 855–869.

[13] , Difference equations for discrete classical multiple orthogonal polynomials, J.
Approx. Theory 150 (2008), no. 2, 132–152.

[14] R. D. Morton and A. M. Krall, Distributional weight functions for orthogonal polyno-
mials, SIAM J. Math. Anal. 9 (1978), no. 4, 604–626.

[15] E. M. Nikishin and V. N. Sorokin, Rational Approximations and Orthogonality, Trans-

lations of Mathematical Monographs, Amer. Math. Soc., Providence, RI 92, 1991.
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