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Abstract
Global companies can sell their products with different warranty periods based on location and times. Cus-

tomers can select the length of warranty on their own if they pay an additional fee. In this paper, we consider the
warranty period and the repair time limit as random variables. A two-dimensional warranty policy is considered
with repair times and failure times. The repair times are considered within the repair time limit and the failure
times are considered within the warranty period. Under the non-renewable warranty policy, we obtain the ex-
pected number of warranty services and their variances in the censored area by warranty period and repair time
limit to conduct a warranty cost analysis. Numerical examples are discussed to demonstrate the applicability of
the methodologies and results using field data based on the proposed approach in the paper.

Keywords: Random variable, non-renewable warranty, two-dimensional warranty, warranty pe-
riod.

1. Introduction

Manufacturers use warranty policies as a marketing tool with hopes to increase the sales and to min-
imize the related warranty costs. An an appropriate warranty period is an important measure for the
manufacturers to minimize the warranty costs. For example, if a warranty period is too long, then
manufacturers are vulnerable to the higher cost of more claims and responsibilities. If the warranty
period is too short, it could be a weak link to attract customers to purchase the product. As such,
warranty becomes an important factor for consumers and manufacturers.

One of the main interests that arise from the warranty policy is to obtain the optimal warranty
period and its corresponding warranty cost analysis. The range of warranty cost analysis needs to
consider the characteristic of the warranty policy and replacement/repair cost as well as the distribu-
tion of the number of product failures. Different models (Blischke, 1994; Blischke and Murthy, 1996)
have been studied to provide guidance in selecting the optimal warranty plans. Further, usage and
age have been studied as two dimensions by many researchers. Using a two-dimensional warranty
policy, we calculate the warranty cost and investigate the statistical properties of warranty models.
Several researchers (Chen and Popova, 2002; Chukova and Johnston, 2006; Chun and Tang, 1999)
have proposed two-dimensional models under warranty. Chukova and Johnston (2006) consider that
the warranty has options in choosing the degree of repair applied to an item that has failed within the
warranty period and develop a particular warranty repair strategy, related to the degree of the warranty
repair, for non-renewing, two-dimensional, free of charge to the consumer warranty policy. Iskandar
et al. (2005) investigate a new warranty servicing strategy for items sold with two-dimensional war-
ranty where the failed item is replaced by a new one when it fails for the first time in a specified region
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of the warranty and all other failures are repaired minimally. In Chen and Popova (2002)’s paper, they
suggest a new maintenance policy which minimizes the total expected servicing cost for an item with
a two-dimensional warranty.

In this paper, we regard that the repair times and failure times are two dimensions. Whenever
a product fails, it is delivered to the customer service center. Then the manufacturer is assumed to
provide the repair service first; however, if they cannot fix it within the repair time limit, then they
provide a replacement service and discontinue the repair option. Under the idea, we develop two-
dimensional warranty model and investigate the warranty cost analysis. If the failure times and the
repair times are independent, marked Poisson process could be used to develop the two-dimensional
warranty model. If they are dependent, bivariate distributions could be used to model the failure
times and the repair times. In either case, the number of warranty services can be determined under
warranty.

In this paper, we assume that the warranty period and the repair time limits are not fixed, but
random variable in the two dimensional warranty policy. It is because the warranty period may not
be fixed but could be different based on the locations and the times. For example, a big global com-
pany like Hyundai Motors wants to sell their products in different countries with different periods of
warranty. Hyundai Motors sells their cars with a 10 years and 100,000 miles warranty in the U.S.;
however, Hyundai’s car has been sold with a much shorter warranty duration and warranty miles in
Korea. In addition, this can be different based on the period that the warranty is offered. For instance,
their warranty periods were not 10 years and 100,000 miles even in the U.S until 1990s. When a
customer wants to buy a car, they can select the warranty period and can extend the warranty period
if they would like to pay the additional money. We consider that warranty period and the repair time
limit random variables because they could be changed based on locations, times and customer’s selec-
tion. Furthermore, failures times and repair times are random variables, too. So four random variables
are considered and we obtain the expected number of warranty services during the warranty period.

Under the two-dimensional warranty policy, two kinds of warranty services are considered. One
is a repair service and the other is a replacement service. The typical well-known two-dimensional
warranty policy is to use usage and age/time as two-dimensions. In this paper, totally different two-
dimensions are used such as the failure times and the repair times. Many researchers have studied
age and product usage as two-dimensional warranty model. A vehicle is very good example for the
two-dimensional warranty policy using age and product usage; however, in many cases, it is not easy
to obtain the information regarding the product usage. For example, if we consider electric appliances
like laptops, refrigerators and radios as well as facilities like nuclear reactor, it is easy to obtain their
ages but it may not easy to know their usages. But, we may easily obtain the information regarding
failure times and repair times if they have experienced failure and repair that enables their use for a
two-dimensional warranty policy. Therefore, in the study, we consider failure times and repair times
as two dimensions for warranty policy. Using the field data, the product’s failure times and repair
times have been investigated for the two-dimensional warranty policy in this study. In the developed
two-dimensional warranty policy, if a customer’s failed product is delivered to the customer service
center for repair services, the customer service center is to return the repaired product back within the
threshold time for the customer’s satisfaction. Therefore, if the failed product cannot be repaired after
the time being, the replacement service is provided instead of the repair service. The failure times
would be censored by the warranty period, while the repair times would be censored by the limitation
of the repair time. If the repair time for a failed system exceeds the time limit, then it is replaced,
rather than being continued for repair.

In Figure 1, a two-dimensional warranty policy is described. W1 represents the warranty period
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Figure 1: Two-dimensional warranty service model under a non-renewable policy

and W2 represents a time limit for the repair service. The horizontal axis is the failure time and
the vertical axis is the repair time. Repair times which are less than the repair time limit are only
considered in the warranty period and they are not included in the warranty period for the customer’s
satisfaction. The failure time, repair time, warranty period, and repair time limit are all assumed to be
random variables . We investigate how many times the warranty services happen in the censored area
and examine the distribution of the number of failures for a warranty cost analysis.

In this paper, we develop a two-dimensional warranty models with repair times and failure times.
The failure time is the interval between product’s recovery time for previous failure and next failure
time; the repair time is the interval between a failure time and its recovery time. For this study, the
following assumptions are needed to develop the cost model.

1) Each failure of a component of the system during the warranty period is immediately detected.

2) A repair time is not included in the warranty period because the repair times is relatively short
compared to the warranty period. It increases customer satisfaction.

3) Repair and replacement do not happen simultaneously.

4) All warranty claims are executed and all claims are valid.

5) When a product fails, the repair service would be provided first.

2. Warranty Cost Analysis

2.1. Two-dimensional bivariate distribution

Let M(W1,W2) be the bivariate renewal function. Two-dimensional renewal function plays an im-
portant role in the analysis of two-dimensional warranty policies; however, it is difficult to obtain
analytic expressions for M(W1,W2) and computational procedures are generally required. Hunter
(1974) obtains the analytical expression for M(W1,W2) using Downton’s bivariate exponential distri-
bution(BED) (1970). It is rare that the transform is invertible in closed form. For most of the bivariate
models, closed Laplace transform inversions are not available (Nachlas, 2005). In the paper, two- di-
mensional renewal function is developed. Let M(W1,W2) be the number of warranty services within
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the warranty period and let (x, y) be failure times and repair times respectively. Later, their parameters
could be calculated using the field data. A bivariate extension of the exponential distribution is pro-
posed as a model for certain problems in reliability engineering. The exponential distribution plays
a fundamental role as a model in a variety of applications, typically connected with survival time, in
some of its many forms of appearance. Unfortunately (unlike the normal distribution) the exponential
distribution does not have a natural extension to the bivariate or the multivariate case. Therefore, a
large number of classes of bivariate distributions with exponential marginals have been proposed since
1960. Among them, the BED with the memoryless property are Marshall and Olkin’s (1967), Fre-
und’s (1961) and Block and Basu’s (1974) from Kotz and Singpurwalla (1999). On the contrary, the
BED without the memoryless property is Raftery’s (1984). In addition, if the marginal distributions of
BED are exponential, then we can use the BED for the field data. Marshall and Olkin’s BED (1967)
and Raftery’s BED (1984) have exponential marginals. Freund’s BED (1961) and Block and Basu’s
BED (1974) have marginals which are a mixture of exponential distributions. In the study, Marshall
and Olkin’s BED is chosen for the warranty cost analysis because it has a memoryless property and
exponential marginal. In Marshall and Olkin’s BED, both the marginals have exponential distribution
and can be equal with a positive probability. Because of that reason, if in a bivariate data set, for
some cases two dimensions take values with positive probabilities, the Marshall and Olkin’s BED can
be used quite effectively to analyze such data set (Kundu and Dey, 2009). The Marshall and Olkin’s
(1967) BED’s joint probability density function is given by

f (x, y) = θ1 (θ2 + θ3) exp (−θ1x − (θ2 + θ3) y) , (2.1)

for 0 < x < y and

f (x, y) = θ2 (θ1 + θ3) exp (−θ2x − (θ1 + θ3) y) , (2.2)

for 0 < y < x and

f (x, y) = θ3 exp (− (θ1 + θ2 + θ3) y) , (2.3)

for 0 < x = y, when x > 0, y > 0, θ1 > 0, θ2 > 0, θ3 > 0.
The marginal pdfs of X and Y are exponential with parameters θ1 + θ3 and θ2 + θ3, respectively;

so,

E(X) =
1

θ1 + θ3
, E(Y) =

1
θ2 + θ3

. (2.4)

The correlation coefficient ρ = Cor(X,Y) is given by

ρ =
θ3

θ1 + θ2 + θ3
. (2.5)

2.2. Expected number of warranty services

We start by determining E[N(W1,W2)] the expected number of warranty services in the censored area
of (W1,W2). First, we condition on X1 and Y1, the times of the first failure renewal and the first repair
renewal. Using the conditional probability, E[N(W1,W2)] can be written as follows:

E[N(W1,W2)] = E[E[N(W1,W2)|X1,Y1]]

=

∫ ∞

0

∫ ∞

0
E[N (W1,W2) |X1 = x,Y1 = y] f (x, y)dxdy (2.6)
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where f (x, y) is the joint inter-arrival density. To determine E[N(W1,W2)|X1 = x,Y1 = y], we now
condition on whether or not the two constants (W1,W2) exceed (x, y), respectively. Therefore, we
consider 4 cases as follows:

1) W1 < x and W2 < y,

2) W1 ≥ x and W2 < y,

3) W1 < x and W2 ≥ y,

4) W1 ≥ x and W2 ≥ y. (2.7)

If we are given that W1 ≥ x and W2 ≥ y then the number of renewals by time will equal 1 plus the
number of additional renewals between W1 and x and between W2 and y. However, if the inter-failure
intervals follow a BED that has the bivariate lack of memory property, it follows W1 < x and W2 < y
given that the amount by which they exceed x and y is a bivariate exponential. Given that the number
of renewals between W1 and x and between W2 and y will have the same distributions as N(W1,W2)
by the memoryless property of exponential random variables. In addition, if the repair time exceeds
the repair time limit in the warranty period, i.e. W1 ≥ x and W2 < y then the warranty service center
provides the replacement service instead of continuing to fix the failed product for the customer’s
satisfaction. Therefore, the expected number of warranty services includes the repair services and the
replacement services together. On the other hand, for other cases, as the first renewal occurs by times
x and y, it follows that the number of renewals by times (W1,W2) is equal to zero. Hence,

E
[
N (W1,W2) |X1 = x,Y1 = y,W1 < x,W2 < y

]
= 0,

E
[
N (W1,W2) |X1 = x,Y1 = y,W1 ≥ x,W2 < y

]
= 0,

E
[
N (W1,W2) |X1 = x,Y1 = y,W1 < x,W2 ≥ y

]
= 1,

E
[
N (W1,W2) |X1 = x,Y1 = y,W1 ≥ x,W2 ≥ y

]
= 1 + E [N (W1,W2)] . (2.8)

Using Equation (2.8) if the first failure time is X1 and its repair time is Y1 the expected number of
warranty services within repair service time limitation W2 and the warranty period W1 is given by

E
[
N (W1,W2) |X1 = x,Y1 = y

]
= E

[
N (W1,W2) |X1 = x,Y1 = y,W1 < x,W2 < y

]
P(W1 < x,W2 < y|X1 < x,Y1 < y)

+ E
[
N (W1,W2) |X1 = x,Y1 = y,W1 ≥ x,W2 < y

]
P(W1 ≥ x,W2 < y|X1 < x,Y1 < y)

+ E
[
N (W1,W2) |X1 = x,Y1 = y,W1 < x,W2 ≥ y

]
P(W1 < x,W2 ≥ y|X1 < x,Y1 < y)

+ E
[
N (W1,W2) |X1 = x,Y1 = y,W1 ≥ x,W2 ≥ y

]
P(W1 ≥ x,W2 ≥ y|X1 < x,Y1 < y)

= E
[
N (W1,W2) |X1 = x,Y1 = y,W1 < x,W2 ≥ y

]
P(W1 < x,W2 ≥ y)

+ E
[
N (W1,W2) |X1 = x,Y1 = y,W1 ≥ x,W2 ≥ y

]
P(W1 ≥ x,W2 ≥ y)

= P(W1 < x,W2 ≥ y) + (1 + E[N(W1,W2)])P(W1 ≥ x,W2 ≥ y). (2.9)

P1 denotes P(W1 < x,W2 ≥ y) and P2 denotes P(W1 ≥ x,W2 ≥ y). Let E[N(W1,W2)] be the expected
number of the warranty services in the area which censored by warranty period W1 and repair time
limit W2. Substituting Equation (2.9) into Equation (2.6), we obtain

E[N(W1,W2)] =

∫ ∞

0

∫ ∞

0
(P1 + (1 + E[N(W1,W2)])P2) f (x, y)dxdy

=

∫ ∞

0

∫ ∞

0
(P1 f (x, y) + (1 + E[N(W1,W2)])P2 f (x, y)) dxdy
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=

∫ ∞

0

∫ ∞

0
P1 f (x, y)dxdy + (1 + E[N(W1,W2)])

∫ ∞

0

∫ ∞

0
P2 f (x, y)dxdy (2.10)

or

E[N(W1,W2)] =

∫ ∞
0

∫ ∞
0 P1 f (x, y)dxdy +

∫ ∞
0

∫ ∞
0 P2 f (x, y)dxdy

1 −
∫ ∞

0

∫ ∞
0 P1 f (x, y)dxdy

. (2.11)

Equation (2.11) can be written by

M(W1,W2) =
P(W1 ≥ X,W2 ≥ Y) + P(W1 < X,W2 ≥ Y)

1 − P(W1 ≥ X,W2 ≥ Y)
. (2.12)

To obtain the variance of the warranty system cost, we first need to calculate the second moment.
Similarly to the first moment, we consider the first failure during the warranty period. We separate
four cases such as Equation (2.8). Then, similarly to Equation (2.9),

E
[
N(W1,W2)2

∣∣∣X1 = x,Y1 = y,W1 ≥ x,W2 ≥ y
]

= E
[
(1 + N(W1,W2))2

]
,

E
[
N(W1,W2)2

∣∣∣X1 = x,Y1 = y,W1 < x,W2 ≥ y
]

= 1 (2.13)

and remaining two cases equal to zero. Therefore,

E
[
N (W1,W2)2

∣∣∣X1 = x,Y1 = y
]

=
(
1 + 2E [N (W1,W2)] + E

[
N (W1,W2)2

])
P (W1 ≥ x,W2 ≥ y) + P (W1 < x,W2 ≥ y) . (2.14)

Using Equation (2.14), we obtain the second moment as follows:

E
[
N (W1,W2)2

]
= E

[
E

[
(N (W1,W2))2

∣∣∣X1 = x,Y1 = y
]]

=

∫ ∞

0

∫ ∞

0

(
E

[
(N (W1,W2))2

∣∣∣X1 = x,Y1 = y
])

f (x, y)dxdy

=

∫ ∞

0

∫ ∞

0

((
1 + 2E [N (W1,W2)] + E

[
N (W1,W2)2

])
P1 + P2

)
f (x, y)dxdy

=
(
1 + 2E [N(W1,W2)] + E

[
N(W1,W2)2

])∫ ∞

0

∫ ∞

0
P1 f (x, y)dxdy +

∫ ∞

0

∫ ∞

0
P2 f (x, y)dxdy. (2.15)

After simplification, the second moment is given by

E
[
N(W1,W2)2

]
=

(1 + 2E[N(W1,W2)])
∫ ∞

0

∫ ∞
0 P1 f (x, y)dxdy +

∫ ∞
0

∫ ∞
0 P2 f (x, y)dxdy

1 −
∫ ∞

0

∫ ∞
0 P1 f (x, y)dxdy

, (2.16)

where E [N(W1,W2)] is given as Equation (2.11).
Using the first moment and the second moment, we easily obtain the variance of the number of

warranty services. Using similar ways for previous case, we obtain the variance as follows:

Var(N(W1,W2))

=
P(W1≥X,W2≥Y)(P(W1<X,W2≥Y) + P(W1≥X,W2≥Y) + 1) + P(W1<X,W2 ≥ Y)

(1 − P(W1≥X,W2≥Y))2 . (2.17)
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Table 1: Failure times and repair times for nuclear power plants(failure time, date, repair time, and hours)
Starting date Failure date Restarting date Failure(day) Repair(hours)

1 1978-04-29 1985-01-27 1985-01-27 2465.68 2.21
2 1983-07-25 1983-08-13 1983-08-13 19.41 5.54
3 1985-09-30 1985-10-19 1985-10-21 20.00 67.58
4 1986-04-29 1986-06-29 1986-07-01 61.96 68.29
5 1988-09-10 1988-09-12 1988-09-12 2.71 1.79
6 1989-09-30 1989-10-11 1989-10-12 11.67 67.83
7 1998-08-11 1999-01-22 1999-01-23 164.75 46.25
8 1999-12-31 2000-09-11 2000-09-12 255.66 40.46
9 2004-07-29 2004-11-30 2004-12-02 124.11 168.46
10 2005-04-22 2005-06-29 2005-07-01 68.68 137.42
11 1983-04-22 1983-05-01 1983-05-02 9.23 82.46
12 1997-07-01 1997-07-15 1997-07-15 14.85 0.04
13 1998-07-01 1998-12-18 1998-12-19 170.01 97.67
14 1999-10-01 2003-04-19 2003-04-20 1296.21 104.04
15 1986-08-25 1986-09-17 1986-09-19 23.90 119.50
16 1987-06-10 1987-06-16 1987-06-17 6.81 19.08
17 1995-03-31 1995-04-27 1995-04-27 27.49 15.75
18 1996-01-01 1996-05-15 1996-05-15 135.47 20.63
19 2002-05-21 2002-11-03 2002-11-05 166.57 89.33
20 2002-12-24 2005-07-02 2005-07-05 921.17 180.46

(From the operational performance information system for nuclear power plant)

3. Real Application and Numerical Examples

In Korea, there are four nuclear sites and, in 2010, there are 20 nuclear power plants in operation
with a total licensed output amount to 17,716 MWe (MegaWatt electrical) and 8 nuclear power plants
under construction, for a total of 28 units in operation by the end of 2016 from Safety and Operational
Status of Nuclear Power Plants in Korea (2008). When 20 nuclear power units’ first failure times and
their repair times and the warranty period and repair time limit are considered as random variables,
we obtain the expected number of warranty services in the warranty period. We briefly describe the
field data and investigate them to check their dependency using Kendall’s τ method. We implement
our proposed approaches to conduct a warranty cost analysis using the field data.

3.1. Data description

There are 20 nuclear failures/repair data in Table 1. And their starting dates, first failure dates and
restarting dates are described, the failure times can be obtained by that starting dates are subtracted
from failure dates. Similarly, the repair times can be obtained in that the failure dates are subtracted
from the restarting dates. The unit failure time is in days and the unit repair time is in hours.

From the operational performance information system of nuclear power plants, we obtain the
failure data and repair data; however there is no information regarding warranty period and repair
time limits. The data for the repair times and failure times are available but the data for the warranty
period and repair time limit are not available. Therefore, we consider that by central limit theorem,
the warranty periods and repair time limits are assumed to follow normal distribution, respectively.
We investigate the warranty cost analysis using repair times and failure times of the nuclear power
plants in the warranty period. Based on the dependency between the failures times and repair times,
the ways for warranty cost analysis could be changed.

Using a Kendall’s τ, we test the hypothesis that the failure times and repair times are dependent.
Kendall’s rank correlation measures the strength of monotonic association between the failure times
and repair times. It may also be noted that usual Pearson correlation is fairly robust and it usually
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Table 2: Estimated parameters in the Marshall and Olkin’s BED
θ1 θ2 θ3 ρ

Estimated Parameters 0.014938 0.003306 0.000046 0.002492

Table 3: Expected number of warranty services under different µ1 and µ2 with σ2
1 = σ2

2 = 1, for the warranty
period and repair time limit

µ2
µ1 = 1000 µ1 = 2000 µ1 = 3000 µ1 = 5000

E Var CV E Var CV E Var CV E Var CV
10 0.16 0.21 2.86 0.16 0.21 2.86 0.16 0.21 2.86 0.16 0.21 2.86
20 0.34 0.57 2.20 0.35 0.59 2.20 0.35 0.59 2.21 0.35 0.59 2.21
30 0.56 1.15 1.93 0.57 1.21 1.94 0.57 1.21 1.94 0.57 1.21 1.94
40 0.57 2.02 2.50 0.82 2.16 1.79 0.82 2.17 1.79 0.82 2.17 1.79
50 1.07 3.28 1.69 1.11 3.59 1.70 1.11 3.60 1.70 1.12 3.60 1.70

100 3.08 21.38 1.50 3.46 27.34 1.51 3.47 27.60 1.51 3.47 27.61 1.51

agrees well in terms of statistical significance with results obtained using Kendall’s rank correlation.
Based on the result of Kendall’s τ method using R software (McLeod, 2005), τ is −0.284 and the
p-value is 0.085515. Therefore, it is concluded that the failure times and repair times are dependent.
In the numerical example, we consider that they are dependent and use bivariate distribution.

3.2. Expected number of warranty services

To illustrate the proposed method, we assume that a two-dimensional warranty has been provided by
the manufacturer to have the warranty period and the time limitation of the repair services. Using
the repair times and the failure times, we conduct a warranty cost analysis by Marshall and Olkin’s
BED. From the nuclear power plant field data, we calculate their BED’s parameters in Table 2 using
Equation (2.4) and (2.5).

By central limit theorem, we consider that the warranty period and repair time limit follow nor-
mal distribution, respectively. Further, W1 and W2 are dependent from Section 3.1. Based on the
parameters in Table 2, we show the numerical example and the sensitivity analysis.

Table 3 shows the expected number of failures under warranty for the limitation parameters. Using
Equation (2.11) and (2.17), we investigate the repair cost. We obtain the expected number of warranty
services and its variance. As a result of the sensitivity analysis, the expected number of warranty
services and its variance are described in Table 3. If W1 and W2 are normally distributed, then µ1 and
σ2

1 stand for the expectation and variance of W1 and µ2 and σ2
2 stand for the expectation and variance

of W2. In Table 3, based on the proposed cost models, Equation (2.11) and (2.17), we obtain the
expected number of warranty services, their variance and coefficient of variation for different values
which start at 10 and finish at 100 by 10 unit. We change the values µ1 as 1000, 2000, 3000 and 5000
with σ2

1 = σ2
2 = 1. Figure 2 for the expected number of warranty services and their variance under

different parameters for the warranty period and repair time limit are provided. Using Figure 2, we
find out the changes of expected values of warranty services and their variances by changing of the
parameters.

4. Concluding Remarks

In this paper, we showed the methodology for two-dimensional warranty policy using the failure times
and repair times. The warrant period and repair time limit are considered random variables because
they could be different based on their location, times, and customers’ own selection. We develop the
cost models to understand the expected values of warranty services and their variances in the warranty
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Figure 2: Expected number of warranty services and its variance under different parameters for the warranty
period and repair time limit

period. In addition, our proposed approaches provide practical tools for practitioners and help them
make important decisions for their companies. Further, as future research topics, if the failure times
and repair times are not exponentially distributed, then we have to develop another models. They
would be interesting topics.
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