Abstract
The image retrieval generally shows the same or similar images to a query image as a result. In the case of rotated image, however, its performance tends to be debased significantly. We propose a method to ensure a reliable image retrieval of rotated images as follows; First, to obtain feature points of query/DB images by Harris Corner Detector; and then, utilizing the feature points, to find the object's axis and query/DB images into rotation invariant images with Principal Components Analysis algorithm. We have experimented with 6,000 natural images which are 256 pixels in diameter. They are 1,000 Wang's images and their rotated images by $30^{\circ}$, $45^{\circ}$, $90^{\circ}$, $135^{\circ}$ and $180^{\circ}$. The simulation results show that the proposed method retrieves rotated images more effectively than the conventional method.
일반적인 영상 검색의 경우 질의 영상과 같은 영상 또는 최대한 유사한 영상을 결과로써 보여주게 되는데 회전 영상의 경우에는 일반적인 영상 검색 방법들의 성능이 현저하게 떨어지는 경향이 있다. 이에 따라 본 논문에서는 회전 영상에 대해서도 검색 성능이 우수하도록 하기 위해 질의 영상과 DB 영상에 대해 Harris Corner Detector 알고리즘을 통해 특징점을 구하고, 그 특징점을 토대로 Principal Components Analysis 알고리즘을 이용해 물체의 주축을 구하여 회전 불변 상태의 영상으로 전환한다. 제안한 기법은 Wang의 원본 1000장의 영상과 $30^{\circ}$, $45^{\circ}$, $90^{\circ}$, $135^{\circ}$, $180^{\circ}$로 회전된 총 6000 장의 지름이 256 크기인 자연 영상을 가지고 실험한 결과, 기존의 기법과 비교하였을 때 회전 영상에 대해서도 우수한 검색 성능을 보였다.