References
- Ahn, S. J., M. Sivaguru, H. Osawa, G. C., Chung, and H. Matsumoto. 2001. Aluminum inhibits the H+-ATPase activity by permanently altering the plasma membrane surface potentials in squash roots. Plant Physiol. 126: 1381-1390. https://doi.org/10.1104/pp.126.4.1381
-
Ahn, S. J., M. Sivaguru, G. C. Chung, Z. Relgel, and H. Matsumoto. 2002. Aluminum-induced growth inhibition is associated with impaired efflux and influx of
$H^+$ across the plasma membrane in root apices of squash (Cucurbita pepo). J. Exp. Bot. 53: 1959-1966. https://doi.org/10.1093/jxb/erf049 -
Ahn, S. J., K. Yu-Sun, et al. 2007. Aluminum-induced Root Growth Inhibition and Impaired Plasma Membrane
$H^+$ -flux in Mung Bean. Kor. J. Crop Sci. 52(2): 213-219. -
Ahn, S. J., Z. Rengel, and H. Matsumoto. 2004. Aluminuminduced plasma membrane surface potential and
$H^+$ -ATPase activity in near-isogenic wheat lines differing in tolerance to aluminum. New Phytol. 162: 71-79. https://doi.org/10.1111/j.1469-8137.2004.01009.x - Bradford, M. M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72: 248-254. https://doi.org/10.1016/0003-2697(76)90527-3
- Delhaize, E., P. R. Ryan, D. M. Hebb, Y. Yamamoto, T. Sasaki, and H. Matsumoto. 2004. Engineering high level aluminum tolerance in barley with the ALMT1 gene. PNAS 101(42): 15249. https://doi.org/10.1073/pnas.0406258101
- Delhaize, E., P. R. Ryan, P. J. Randall. 1993. Aluminum tolerance in wheat (Triticum aestivum L.). II. Aluminum-stimulated excretion of malic acid from root apices. Plant Physiol. 103: 695-702.
- Foyn, E. 1965. Disposal of waste in the marine environment and the pollution of the sea Oceanogr. Mar. Biol. Ann. Rev. 3 3: 95-114.
-
Kim, YS., Park. W. Nian, H. Sasaki, T. Ezaki, Bunichi. Jang, YS. Chung, GC. Bae, HJ. Ahn, SJ. 2010. Aluminum tolerance associated with enhancement of plasma membrane
$H^+$ -ATPase in the root apex of soybean. Soil Science & Plant Nutrition 56(1): 140-149. https://doi.org/10.1111/j.1747-0765.2009.00437.x - Kochian L. V. 1995. Cellular mechanisms of aluminum toxicity and resistance in plants. Annu. Rev. Plant Physiol. Plant Mol. Biol. 46: 237-260. https://doi.org/10.1146/annurev.pp.46.060195.001321
- Kollmeier, M., H. H. Felle. 2000. Genotypical Differences in Aluminum Resistance of Maize Are Expressed in the Distal Part of the Transition Zone. Is Reduced Basipetal Auxin Flow Involved in Inhibition of Root Elongation by Aluminum? Plant Physiol. 122(3): 945-956. https://doi.org/10.1104/pp.122.3.945
- Ma, J. F., S. J. Zheng, H. Matsumoto, and S. Hiradate. 1997. Detoxifying aluminum with buckwheat. Nature 390: 569-570.
- Matsumoto, H. 2000. Cell biology of Al tolerance and toxicity in higher plants. Int Rev. Cytol. 200: 1-46. https://doi.org/10.1016/S0074-7696(00)00001-2
-
Miyasaka, S. C., L. V. Kochian, J. E. Shaff, and C. D. Foy. 1989. Mechanism of aluminum tolerance in wheat: an investigation of genotypic differences in rhizosphere pH,
$K^+$ , and$H^+$ transport, and root-cell membrane potentials. Plant Physiol. 91: 1188-1196. https://doi.org/10.1104/pp.91.3.1188 -
Morsomme, P. and M. Boutry 2000. The plant plasma membrane
$H^+$ -ATPase: structure, function and regulation. Biochimicaet Biophysica Acta (BBA)-Biomembranes1 465(1-2): 1-16. - Palmgren, M. G., P. Askerlund, K. Fredrikson, S. Widell, M. Sommarin, and C. Larsson. 1990. Sealed inside-out and rightside- out plasma membrane vesicles: optimal conditions for formation and separation. Plant Physiol. 92: 871-880. https://doi.org/10.1104/pp.92.4.871
-
Pineros, M. and L. Kochian 2001. A patch-clamp study on the physiology of aluminum toxicity and aluminum tolerance in maize. Identification and characterization of
$Al^3+$ -induced anion channels. Plant Physiology1 25(1): 292. - Ryan, N. 1993 Coping with Volatility: Four Models of Policy Communities. In Hede, A and S. Prasser (Eds) Policy Making in Volatile Times, Hale and Iremonger, Sydney.
- Sanchez, P.A. and J.R. Benites. 1987. Low-input cropping for acid soils of the humid tropics: a transition technology between shifting and continuous cultivation. In Latham,M. and P. Ahn (eds). Africaland: Land Development and Management of Acid Soils in Africa. BSRAM Proceedings No.7. Bangkok, Thailand, pp. 85-106.
- Sasaki, T., Y. Yamamoto. 2004. A wheat gene encoding an aluminum-activated malate transporter. The Plant Journal 37(5): 645-653. https://doi.org/10.1111/j.1365-313X.2003.01991.x
- Sivaguru, M. and W. J. Horst. 1998. The distal part of the transition zones is the most aluminum-sensitive apical root zone of maize. Plant Physiol. 116: 155-163. https://doi.org/10.1104/pp.116.1.155
- Sussman, M. R. 1994. Molecular analysis of proteins in the plant plasma membrane. Annu. Rev. Plant Physiol. Plant Mol. Biol. 45: 211-234. https://doi.org/10.1146/annurev.pp.45.060194.001235
- Yamaguchi, M., T. Sasaki. 2005. Evidence for the Plasma Membrane Localization of Al-activated Malate Transporter (ALMT1). Plant and Cell Physiology 46(5): 812-816. https://doi.org/10.1093/pcp/pci083