DOI QR코드

DOI QR Code

A Rapid Screening for Aluminum-tolerant and -sensitive in Barley (Hordeum vulgare L.) and Plasma Membrane H+-ATPase Expression

알루미늄 내성과 민감성 보리의 빠른 screening과 원형질막 H+-ATPase의 발현

  • Kim, Hyun-Sung (Department of Bioenergy Science and Technology, Bioenergy Research Center, Chonnam National University) ;
  • Oh, Jung-Min (Department of Bioenergy Science and Technology, Bioenergy Research Center, Chonnam National University) ;
  • Ahn, Sung-Ju (Department of Bioenergy Science and Technology, Bioenergy Research Center, Chonnam National University)
  • 김현성 (전남대학교 농업생명과학대학 바이오에너지공학과 바이오에너지연구센터) ;
  • 오정민 (전남대학교 농업생명과학대학 바이오에너지공학과 바이오에너지연구센터) ;
  • 안성주 (전남대학교 농업생명과학대학 바이오에너지공학과 바이오에너지연구센터)
  • Received : 2011.01.31
  • Published : 2011.03.30

Abstract

Here we report a simple screening system using hematoxylin staining (HS) of the root apex. It allowed rapid classification into different aluminum (Al) tolerance from 65 cultivars within one week. Using this system, we selected the most Al-tolerant (Jayae-2) and-sensitive (Pum-2) barley (Hordeum vulgare L.) The results show that the different responses in Al-induced growth inhibition, Al accumulation and expression of plasma membrane (PM) $H^+$-ATPase in root apices of selected two cultivars. It showed strongly Al-induced growth inhibition in a dosedependant manner only in Pum-2 but not in Jayae-2. Aluminum accumulation in root apices (10 mm) was significantly higher in Pum-2 only. The $H^+$-ATPase expression of PM vesicles by western blotting was decreased in Pum-2 but not in Jayae-2 treated with $20{\mu}M$ Al for 24 h. These finding indicate to screen from our system is rapid and reliable and to sustain the expression of PM $H^+$-ATPase at translational level is an important role in root growth as affected by Al.

본 연구는 간이 수경재배법을 이용하여 보리의 알루미늄 스트레스 내성과 민감성 품종을 간편하고 빠르게 screen하는 방법을 소개하고, 선별된 품종간의 뿌리의 생장, 뿌리 조직의 염색, 알루미늄 함량, 원형질막의 $H^+$-ATPase의 발현 변화를 조사하여 분석하였다. l. 보리 65가지 품종을 간이 수경재배법을 이용하여 $20{\mu}M$ 알루미늄을 24시간 처리 후 뿌리생장의 차이로 내성 세 품종(자예2, 자예6, 모치무기)과 민감성 세 품종(흰쌀, 올쌀, 품2)을 선별하였다. 2. 알루미늄에 내성 품종은 알루미늄 처리 농도(0, 5, 10, $20{\mu}M$)에 따라 뿌리 생장 감소폭이 적었으나, 민감성 세 품종은 상대적으로 낮은 $5{\mu}M$ 농도에서부터 80%의 생장이 억제되었다. 3. 내성인 자예2와 민감성인 품2의 알루미늄 처리 후, 농도별(0, 5, 10, $20{\mu}M$), 시간별(3, 6, 12, 24시간)로 0.2% hematoxylin으로 염색 시 주로 apex에 3시간 이후부터 염색되었으며, 민감성 품2가 내성인 자예2에 비해 농도와 시간에 따라 그 피해 정도가 매우 심각하였다. 4. $20{\mu}M$로 24 시간 처리된 뿌리 apex(10 mm)의 알루미늄 함량을 측정한 결과, 내성인 자예2는 주당 47.1 nmol의 함량을 보여 주었으나, 민감성인 품2는 주당 64.9 nmol의 높은 함량을 보여 주었다. 5. 24시간 동안 $20{\mu}M$ 알루미늄을 처리한 뿌리 원형질막 $H^+$-ATPase 발현을 western blotting을 통해 분석한 결과, 내성인 자예2는 차이가 없었으나, 민감성 품2는 현저히 억제되었다. 이로 보아 원형질막 $H^+$-ATPase가 알루미늄의 내성 기작에 관여하는 것으로 보인다. 6. 본 연구를 통해 간이 수경재배와 hematoxylin을 이용한 염색으로 간단하고 빠르게 보리의 알루미늄 내성과 민감성 품종의 screening을 할 수 있었고, 보리뿐 아니라 쌀, 밀 등의 다른 종자에도 적용할 수 있을 것이다.

Keywords

References

  1. Ahn, S. J., M. Sivaguru, H. Osawa, G. C., Chung, and H. Matsumoto. 2001. Aluminum inhibits the H+-ATPase activity by permanently altering the plasma membrane surface potentials in squash roots. Plant Physiol. 126: 1381-1390. https://doi.org/10.1104/pp.126.4.1381
  2. Ahn, S. J., M. Sivaguru, G. C. Chung, Z. Relgel, and H. Matsumoto. 2002. Aluminum-induced growth inhibition is associated with impaired efflux and influx of $H^+$ across the plasma membrane in root apices of squash (Cucurbita pepo). J. Exp. Bot. 53: 1959-1966. https://doi.org/10.1093/jxb/erf049
  3. Ahn, S. J., K. Yu-Sun, et al. 2007. Aluminum-induced Root Growth Inhibition and Impaired Plasma Membrane $H^+$-flux in Mung Bean. Kor. J. Crop Sci. 52(2): 213-219.
  4. Ahn, S. J., Z. Rengel, and H. Matsumoto. 2004. Aluminuminduced plasma membrane surface potential and $H^+$-ATPase activity in near-isogenic wheat lines differing in tolerance to aluminum. New Phytol. 162: 71-79. https://doi.org/10.1111/j.1469-8137.2004.01009.x
  5. Bradford, M. M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72: 248-254. https://doi.org/10.1016/0003-2697(76)90527-3
  6. Delhaize, E., P. R. Ryan, D. M. Hebb, Y. Yamamoto, T. Sasaki, and H. Matsumoto. 2004. Engineering high level aluminum tolerance in barley with the ALMT1 gene. PNAS 101(42): 15249. https://doi.org/10.1073/pnas.0406258101
  7. Delhaize, E., P. R. Ryan, P. J. Randall. 1993. Aluminum tolerance in wheat (Triticum aestivum L.). II. Aluminum-stimulated excretion of malic acid from root apices. Plant Physiol. 103: 695-702.
  8. Foyn, E. 1965. Disposal of waste in the marine environment and the pollution of the sea Oceanogr. Mar. Biol. Ann. Rev. 3 3: 95-114.
  9. Kim, YS., Park. W. Nian, H. Sasaki, T. Ezaki, Bunichi. Jang, YS. Chung, GC. Bae, HJ. Ahn, SJ. 2010. Aluminum tolerance associated with enhancement of plasma membrane $H^+$-ATPase in the root apex of soybean. Soil Science & Plant Nutrition 56(1): 140-149. https://doi.org/10.1111/j.1747-0765.2009.00437.x
  10. Kochian L. V. 1995. Cellular mechanisms of aluminum toxicity and resistance in plants. Annu. Rev. Plant Physiol. Plant Mol. Biol. 46: 237-260. https://doi.org/10.1146/annurev.pp.46.060195.001321
  11. Kollmeier, M., H. H. Felle. 2000. Genotypical Differences in Aluminum Resistance of Maize Are Expressed in the Distal Part of the Transition Zone. Is Reduced Basipetal Auxin Flow Involved in Inhibition of Root Elongation by Aluminum? Plant Physiol. 122(3): 945-956. https://doi.org/10.1104/pp.122.3.945
  12. Ma, J. F., S. J. Zheng, H. Matsumoto, and S. Hiradate. 1997. Detoxifying aluminum with buckwheat. Nature 390: 569-570.
  13. Matsumoto, H. 2000. Cell biology of Al tolerance and toxicity in higher plants. Int Rev. Cytol. 200: 1-46. https://doi.org/10.1016/S0074-7696(00)00001-2
  14. Miyasaka, S. C., L. V. Kochian, J. E. Shaff, and C. D. Foy. 1989. Mechanism of aluminum tolerance in wheat: an investigation of genotypic differences in rhizosphere pH, $K^+$, and $H^+$ transport, and root-cell membrane potentials. Plant Physiol. 91: 1188-1196. https://doi.org/10.1104/pp.91.3.1188
  15. Morsomme, P. and M. Boutry 2000. The plant plasma membrane $H^+$-ATPase: structure, function and regulation. Biochimicaet Biophysica Acta (BBA)-Biomembranes1 465(1-2): 1-16.
  16. Palmgren, M. G., P. Askerlund, K. Fredrikson, S. Widell, M. Sommarin, and C. Larsson. 1990. Sealed inside-out and rightside- out plasma membrane vesicles: optimal conditions for formation and separation. Plant Physiol. 92: 871-880. https://doi.org/10.1104/pp.92.4.871
  17. Pineros, M. and L. Kochian 2001. A patch-clamp study on the physiology of aluminum toxicity and aluminum tolerance in maize. Identification and characterization of $Al^3+$-induced anion channels. Plant Physiology1 25(1): 292.
  18. Ryan, N. 1993 Coping with Volatility: Four Models of Policy Communities. In Hede, A and S. Prasser (Eds) Policy Making in Volatile Times, Hale and Iremonger, Sydney.
  19. Sanchez, P.A. and J.R. Benites. 1987. Low-input cropping for acid soils of the humid tropics: a transition technology between shifting and continuous cultivation. In Latham,M. and P. Ahn (eds). Africaland: Land Development and Management of Acid Soils in Africa. BSRAM Proceedings No.7. Bangkok, Thailand, pp. 85-106.
  20. Sasaki, T., Y. Yamamoto. 2004. A wheat gene encoding an aluminum-activated malate transporter. The Plant Journal 37(5): 645-653. https://doi.org/10.1111/j.1365-313X.2003.01991.x
  21. Sivaguru, M. and W. J. Horst. 1998. The distal part of the transition zones is the most aluminum-sensitive apical root zone of maize. Plant Physiol. 116: 155-163. https://doi.org/10.1104/pp.116.1.155
  22. Sussman, M. R. 1994. Molecular analysis of proteins in the plant plasma membrane. Annu. Rev. Plant Physiol. Plant Mol. Biol. 45: 211-234. https://doi.org/10.1146/annurev.pp.45.060194.001235
  23. Yamaguchi, M., T. Sasaki. 2005. Evidence for the Plasma Membrane Localization of Al-activated Malate Transporter (ALMT1). Plant and Cell Physiology 46(5): 812-816. https://doi.org/10.1093/pcp/pci083