A study on the simplification of HRTF within high frequency region

고역 주파수 영역에서 HRTF의 간략화에 관한 연구

  • Received : 2010.12.03
  • Accepted : 2011.02.02
  • Published : 2011.01.30

Abstract

In this study, we investigated the effect of the simplification for high frequency region in Head-Related Transfer Function(HRTF) on the sound localization. For this purpose, HRTF was measured and analyzed. The result in the HRTF frequency characteristic of the back sound source showed that the decrease revel of high frequency was smaller than that of low frequency region, which means the possibility of simplification in the high frequency region. Simplification was performed by flattening of the high frequency amplitude characteristics with the insertion of the low-pass filter, whose cutoff frequency is given by boundary frequency. Auditory experiments were performed to evaluate the simplified HRTF. The result showed that direction perception was not influenced by the simplification of the frequency characteristics of HRTF for the error of sound localization. The rate of confusion for the front and back was not affected by the simplification of the frequency characteristics over 8kHz of HRTF. Finally, we made it clear that the sound localization was not affected by the simplification of frequency characteristics of HRTF over 8kHz.

본 연구에서는 머리전달함수(Head-Related Transfer Function : HRTF) 고역 주파수 영역에서의 간략화가 음상정위에 미치는 영향에 관하여 검토하였다. 이를 위해 HRTF를 측정하였으며 측정한 HRTF에 대하여 분석한 결과, 음원 반대편(음원에서 멀리 떨어진 귀)의 HRTF 고역 주파수 특성은 회절의 성질을 고려하면 머리에 의해 거의 감쇄가 된다. 이와 같이 감쇄된 주파수 영역에 대해서는 정위에 미치지 않는다고 가정하면 간략화가 가능하다. 간략화는 경계 주파수를 차단 주파수로 하는 지역통과 필터를 삽입하여 고역의 주파수 진폭특성을 평탄하게 함으로서 간략화를 하였다. 간략화를 한 HRTF를 평가하기 위하여 청취실험을 하였다. 청취실험의 결과, 정위오차에 대해서는 HRTF의 주파수 특성을 간략화 하여도 방향 지각에 영향이 없다는 것이 나타났다. 전후 혼란율에 대해서는 HRTF의 8kHz 이상의 주파수 특성을 간략화 하여도 영향이 없음이 나타났다. 최종적으로는 HRTF의 8kHz 이상의 주파수 특성에 본 연구의 간략화를 적용하여도 음상정위에 영향을 미치지 않는다는 것이 나타났다.

Keywords

References

  1. 한국음향학회 편, "음향용어사전", 교학사, 2003.
  2. J. W. Strutt, "On our perception of sound direction", Philosphical Magazine 13, 1984.
  3. W. Mills, "Auditory localization", Foundations of Modem Auditory Theory, New York, 1972.
  4. Bill Gardner, "HRTF measurement of a KEMAR dummy-head microphone", MIT Media Lab, 1994.
  5. E. A. G. Shaw and R. Teranishi, "Sound pressure generated in an exteral-ear replica and real human ear by a nearby sound source", J. Acoust. Soc. Am, 44, 240-249, 1968. https://doi.org/10.1121/1.1911059
  6. Brian. C. J. Moore, " An introduction to the Psychology of Hearing", Academic Press Limited, 1989.
  7. 領木英男, "極零モデルを用いた周波數應答關數のカーブ", 電子情報通信學會技術研究報告, EA, 應用音響, 1-8, 2002.
  8. Kazuhiro Iida, Motokuni Itoh, Atsue Itagaki and Masayuki Morimoto, "Median plane localization using parametric model of the head-related transfer function based on spectral cues ", Applied Acoustics, 68(8), 835-850, 2007. https://doi.org/10.1016/j.apacoust.2006.07.016
  9. A. Kulkarni and H. S. Colburn, "Infinite-impulse-response models of the head-related transfer function", J. Acoust. Soc. Am, 115(4), 1714-1728, 2004. https://doi.org/10.1121/1.1650332
  10. Senova Melis A., Mcanaly Ken I. and Martin Russell L., "Localization of Virtual Sound as a Function of Head-Related Impulse Response Duration", Japanese Association for Sound Ecology, 50, 57-66, 2002.
  11. H. Moller, M. F. sorensen, C. B. Jensen and D. Hammershoi, "Binaural technique", J. Audi Eng. Soc., 44(6), 451-469, 1996.
  12. Chai-bong Lee, "A study on the simplification of HRTF within low frequency region", KISPS Fall Conference Proceedings 2010, 11(2), 487-490, 2010.
  13. N. Aoshima, "Computer-generated pulse signal applied for sound measurement", J. Acoust. Soc. Am., 69(55), 1484-1488, 1981. https://doi.org/10.1121/1.385782