DOI QR코드

DOI QR Code

A Comparison of Global Feature Extraction Technologies and Their Performance for Image Identification

영상 식별을 위한 전역 특징 추출 기술과 그 성능 비교

  • Received : 2010.09.06
  • Accepted : 2010.11.19
  • Published : 2011.01.31

Abstract

While the circulation of images become active, various requirements to manage increasing database are raised. The content-based technology is one of methods to satisfy these requirements. The image is represented by feature vectors extracted by various methods in the content-based technology. The global feature method insures fast matching speed because the feature vector extracted by the global feature method is formed into a standard shape. The global feature extraction methods are classified into two categories, the spatial feature extraction and statistical feature extraction. And each group is divided by what kind of information is used, color feature or gray scale feature. In this paper, we introduce various global feature extraction technologies and compare their performance by accuracy, recall-precision graph, ANMRR, feature vector size and matching time. According to the experiments, the spatial features show good performance in non-geometrical modifications, and the extraction technologies that use color and histogram feature show the best performance.

영상의 유통이 활발해 지면서 증가하는 데이터베이스를 효율적으로 관리하기 위한 다양한 요구들이 생겨났다. 내용 기반 기술은 이런 요구들을 충족시켜 줄 기술 중 하나이다. 내용 기반 기술에서는 다양한 특징 방법을 이용해 영상을 표현할 수 있지만, 그 중 전역 특정 방법은 추출된 특정 벡터가 규격화 되어 빠른 정합 속도를 확보할 수 있다는 장점이 있다. 전역 특정 방법은 크게 공간적 특성을 이용한 방법과 통계적 특성을 이용한 방법으로 분류할 수 있고, 각각은 다시 컬러 성분을 이용한 방법과 밝기 성분을 이용한 방법으로 분류된다. 본 논문에서는 이와 같은 분류 방법에 따라 다양한 전역 특정 방법들을 살펴보고, 정확성 실험, 재현율-정확도 그래프, ANMRR, 특징 벡터 크기-정합시간 등을 이용해 개별 전역 특정들의 성능을 비교하였다. 실험 결과 공간적 특성을 이용한 전역 특징은 비기하학적 변형에서 특히 뛰어난 성능을 보였으며, 컬러 성분과 히스토그램을 이용한 전역 특정 방법이 가장 좋은 성능을 보였다.

Keywords

References

  1. D.G. Lowe, "Distinctive Image Features from Scale-Invariant Keypoints," International Journal of Computer Vision, Vol.60, No.2, pp. 91-110, 2004. https://doi.org/10.1023/B:VISI.0000029664.99615.94
  2. H. Bay, T. Tuytelaars, and L. Van Gool, "Surf: Speeded Up Robust Features," Proc. European Conference on Computer Vision 2006, LNCS 3951, pp.404-417, 2006
  3. T. Deselaers, D. Keysers, and H. Ney, "Features for image retrieval: An experimental comparison," Information Retrieval, Vol.11, No. 2, pp.77-107, 2008. https://doi.org/10.1007/s10791-007-9039-3
  4. C. Kim, "Content-based Image copy detection," Signal Processing: Image Communication, Vol.18, No.3, pp.169-184, 2003. https://doi.org/10.1016/S0923-5965(02)00130-3
  5. K. Wnukowicz, G. Galinski, and R. Tous, "Still Image Copy Detection Algorithm Robust to Basic Image Modifications," ELMAR-2008, pp. 455-458, 2008.
  6. K. Wnukowicz, W. Skarbek, and G. Galinski, "Trajectory of Singular Energies for Image Replica Detection," SIGMAP 2007, pp. 444-449, 2007.
  7. Ming-Ni Wu, Chia-Chen Lin, and Chin-Chen Chang, "A Robust Content-based Copy Detection Scheme," Fundamenta Informaticae, Vol. 71, No.2-3, pp.351-366, 2006.
  8. A.Y. Cho, W.K. Yang, J.W. Lee, W.G. Oh, and D.S. Jeong, "Detection of copied Images using Concentric Circle Algorithm," CCSN 2008, pp. 13-16, 2008.
  9. Samia G. Omar, Mohamed A. Ismail, and Sahar M. Ghanem, "WAY-LOOK4: A CBIR system based on class signature of the images' color and texture features," AICCSA-2009, pp.464-471, 2009.
  10. C.C. Lin and S.S. Wang, "An Edge-based Copy Detection Scheme," Fundamenta Informaticae, Vol.83, No.3, pp.299-318, 2008.
  11. Lei Wu, Jing Liu, Nenghai Yu, and Mingjing Li, "Query oriented subspace shifting for near-duplicate image detection," ICME 2008, pp. 661-664, 2008.
  12. S. J. Park, D. K. Park, and C. S. Won, "Core experiments on MPEG-7 edge histogram descriptor," MPEG document, M5984, 2000.
  13. Manjunath, B.S., Ohm, J.-R., Vasudevan, V.V. and Yamada, A., "Color and texture descriptors," IEEE Transactions on Circuits and Systems for Video Technology, Vol.11, No.6, pp. 703-715, 2001. https://doi.org/10.1109/76.927424
  14. Chee Sun Won, Dong Kwon Park, and Soo-Jun Park, "Efficient Use of MPEG-7 Edge Histogram Descriptor," ETRI Journal, Vol.24, No. 1, pp.23-30, 2002. https://doi.org/10.4218/etrij.02.0102.0103
  15. Cho-Huak The and Roland T. Chin, "On Image Analysis by the Methods of Moments," IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol.10, No.4, pp.496-513, 1988. https://doi.org/10.1109/34.3913
  16. Alireza Khotanzad and Yaw Hua Hong, "Invariant Image Recognition by Zernike Moments," IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol.12, No.5, pp.489-497, 1990. https://doi.org/10.1109/34.55109
  17. M.J. Swain and D.H. Ballard, "Color Indexing," International Journal of Computer Vision, Vol. 7, No.1, pp.11-32, 1991. https://doi.org/10.1007/BF00130487
  18. Greg Pass, Ramin Zabih, and Justin Miller., "Comparing Images Using Color Coherence Vectors," ACM Multimedia 1996, pp.65-73, 1996.
  19. Ojala. T., Aittola. M., and Matinmikko, E., "Empirical evaluation of MPEG-7 XM color descriptors in content-based retrieval of semantic image categories," ICPR 2002, Vol.16, No.2, pp.1021-1024, 2002.
  20. Young Deok Chun, Sang Yong Seo, and Nam Chul Kim, "Image retrieval using BDIP and BVLC moments," IEEE Transactions on Circuits and Systems for Video Technology, Vol. 13, No.9, pp.951-957, 2003. https://doi.org/10.1109/TCSVT.2003.816507
  21. W.-K. Yang, A. Cho, D.-S. Jeong, and W.-G. Oh, "Image Description and Matching Scheme for Identical Image Searching," CONTENT 2009, pp.669-674, 2009.
  22. ISO/IEC/JTC1/SC29/WG11:"Descriptionof Core Experiments for MPEG-7 Color/Texture Descriptors," MPEG document, N2929, 1999.

Cited by

  1. Design and Implementation of EAI(Enterprise Application Integration) System for Privacy Information vol.2, pp.1, 2013, https://doi.org/10.3745/KTCCS.2013.2.1.051