DOI QR코드

DOI QR Code

Synthesis and Surface-derivatization of Silicon Nanoparticles and their Photoluminescence and Stability

  • Received : 2011.09.02
  • Accepted : 2011.12.22
  • Published : 2011.12.30

Abstract

We describe the synthesis and characterization of silicon nanoparticles prepared by the solution reduction of silicon tetrachloride by lithium naphthalenide and subsequently with n-butyllithium at room temperature. These reactions produce silicon nanoparticles with surfaces that are covalently terminated with butyl group. Reaction with lithium aluminium hydride instead of n-butyllithium produces hydride-terminated silicon nanoparticles. The butyl or hydride terminated silicon nanoparticles can be suspended in hexane and their optical behavior have been characterized by photoluminescence spectroscopy. Stabilization of silicon nanoparticles were investigated upon illumination, indicating that as-prepared silicon nanoparticles are very stable at room temperature for several days.

Keywords

References

  1. J. L. Gole, B. Clemens, Z. L. Wang, and M. White, "Unusual properties and reactivity at the nanoscale", J. Phys. Chem. Solids, Vol. 66, p. 546, 2005. https://doi.org/10.1016/j.jpcs.2004.06.047
  2. K. A. Pettigrew, Q. Liu, P. P. Power, and S. M. Kauzlarich, "Solution Synthesis of Alkyl- and Alkyl/ Alkoxy-Capped Silicon Nanoparticles via Oxidation of Mg2Si", Chem. Mater., Vol. 15, p. 4005, 2003. https://doi.org/10.1021/cm034403k
  3. R. A. Bley and S. M. Kauzlarich, "A Low-Temperature Solution Phase Route for the Synthesis of Silicon Nanoclusters", J. Am. Chem. Soc., Vol. 118, p. 12461, 1996. https://doi.org/10.1021/ja962787s
  4. C. B. Murray, D. J. Norris, and M. G. Bawendi, "Synthesis and characterization of nearly monodisperse CdE (E = sulfur, selenium, tellurium) semiconductor nanocrystallites", J. Am. Chem. Soc., Vol. 115, p. 8706, 1993. https://doi.org/10.1021/ja00072a025
  5. J. E. B. Katari, V. L. Colvin, and A. P. Alivisatos, "X-ray Photoelectron Spectroscopy of CdSe Nanocrystals with Applications to Studies of the Nanocrystal Surface", J. Phys. Chem., Vol. 98, p. 4109, 1994. https://doi.org/10.1021/j100066a034
  6. F. V. Mikulec, M. Kuno, M. Bennati, D. A. Hall, R. G. Griffin, and M. G. Bawendi, "Organometallic Synthesis and Spectroscopic Characterization of Manganese-Doped CdSe Nanocrystals", J. Am. Chem. Soc., Vol. 122, p. 2532, 2000. https://doi.org/10.1021/ja991249n
  7. C. P. Collier, R. J. Saykally, J. J. Shiang, S. E. Henrichs, and J. R. Heath, "Reversible Tuning of Silver Quantum Dot Monolayers Through the Metal-Insulator Transition", Science, Vol. 277, p. 1978, 1997. https://doi.org/10.1126/science.277.5334.1978
  8. V. L. Colvin, M. C. Schlamp, and A. P. Alivisatos, "Light-emitting diodes made from cadmium selenide nanocrystals and a semidomducting polymer", Nature, Vol. 370, p. 354, 1994. https://doi.org/10.1038/370354a0
  9. W. C. W. Chan and S. M. Nie, "Quantum Dot Bioconjugates for Ultrasensitive Nonisotopic Detection", Science, Vol. 281, p. 2016, 1998. https://doi.org/10.1126/science.281.5385.2016
  10. M. O. M. Piepenbrock, T. Stirner, M. Kelly, and M. O'Neill, "A Low-Temperature Synthesis for Organically Soluble HgTe Nanocrystals Exhibiting Near- Infrared Photoluminescence and Quantum Confinement", J. Am. Chem. Soc., Vol. 128, p. 7087, 2006. https://doi.org/10.1021/ja060721j
  11. L. T. Canham, "Silicon quantum wire array fabrication by electrochemical and chemical dissolution of wafers", Appl. Phys. Lett., Vol. 57, p. 1046, 1990. https://doi.org/10.1063/1.103561
  12. J. D. Holmes, K. J. Ziegler, R. C. Doty, L. E. Pell, K. P. Johnston, and A. Korgel Brian, "Highly Luminescent Silicon Nanocrystals with Discrete Optical Transitions", J. Am. Chem. Soc., Vol. 123, p. 3743, 2001. https://doi.org/10.1021/ja002956f
  13. G. Belomoin, J. Therrien, A. Smith, S. Rao, R. Twesten, S. Chaieb, M. H. Nayfeh, L. Wagner, and L. Mitas, "Observation of a magic discrete family of ultrabright Si nanoparticles", Appl. Phys. Lett., Vol. 80, p. 841, 2002. https://doi.org/10.1063/1.1435802
  14. D. Mayeri, B. L. Phillips, M. P. Augustine, and S. M. Kauzlarich, "NMR Study of the Synthesis of Alkyl-Terminated Silicon Nanoparticles from the Reaction of SiCl4 with the Zintl Salt, NaSi", Chem. Mater., Vol. 13, p. 765, 2001. https://doi.org/10.1021/cm000418w
  15. J. R. Heath, "A Liquid-Solution-Phase Synthesis of Crystalline Silicon", Science, Vol. 258, p. 1131, 1992. https://doi.org/10.1126/science.258.5085.1131
  16. A. Kornowski, M. Giersig, R. Vogel, A. Chemseddine, and H. Weller, "Nanometer-sized colloidal germanium particles: Wet-chemical synthesis, laserinduced crystallization and particle growth", Adv. Mater., Vol. 5, p. 634, 1993. https://doi.org/10.1002/adma.19930050907
  17. J. P. Wilcoxon and G. A. Samara, "Tailorable, visible light emission from silicon nanocrystals", Appl. Phys. Lett., Vol. 74, p. 3164, 1999. https://doi.org/10.1063/1.124096
  18. N. A. Dhas, C. P. Raj, and A. Gedanken, "Preparation of Luminescent Silicon Nanoparticles: A Novel Sonochemical Approach", Chem. Mater., Vol. 10, p. 3278, 1998. https://doi.org/10.1021/cm980408j
  19. J. M. Buriak, "Organometallic chemistry on silicon and germanium surfaces", Chem. Rev., Vol. 102, p. 1271, 2002. https://doi.org/10.1021/cr000064s
  20. X. Li, Y. He, and M. T. Swihart, "Electrochemical Deposition of Silver in Room-Temperature Ionic Liquids and Its Surface-Enhanced Raman Scattering Effect", Langmuir, Vol. 20, p. 4720, 2004. https://doi.org/10.1021/la036219j
  21. R. S. Carter, S. J. Harley, P. P. Power, and M. P. Augustine, "Use of NMR Spectroscopy in the Synthesis and Characterization of Air- and Water-Stable Silicon Nanoparticles from Porous Silicon", Chem. Mater., Vol. 17, p. 2932, 2005. https://doi.org/10.1021/cm040377u
  22. A. P. Alivisatos, "Perspectives on the Physical Chemistry of Semiconductor Nanocrystals", J. Phys. Chem., Vol. 100, p. 13226, 1996. https://doi.org/10.1021/jp9535506
  23. E. W. Draeger, J. C. Grossman, A. J. Williamson, and G. Galli, "Influence of Synthesis Conditions on the Structural and Optical Properties of Passivated Silicon Nanoclusters", Phys. Rev. Lett., Vol. 90, p. 167402, 2003. https://doi.org/10.1103/PhysRevLett.90.167402
  24. J. H. Song and M. J. Sailor, "Reaction of Photoluminescent Porous Silicon Surfaces with Lithium Reagents To Form Silicon-Carbon Bound Surface Species", Inorg. Chem., Vol. 38, p. 1498, 1999. https://doi.org/10.1021/ic980303i
  25. L. T. Canham, A. Loni, P. D. J. Calcott, A. J. Simons, C. Reeves, M. R. Houlton, and J. P. Newey, "On the origin of blue luminescence arising from atmospheric impregnation of oxidized porous silicon", Thin Solid Films, Vol. 276, p. 112, 1996. https://doi.org/10.1016/0040-6090(95)08072-4
  26. H. Koyama, Y. Matsushita, and N. Koshita, "Activation of blue emission from oxidized porous silicon by annealing in water vapor", J. Appl. Phys., Vol. 83, p. 1776, 1998. https://doi.org/10.1063/1.366899
  27. A. O. Konstantinov, A. Henry, C. I. Harris, and E. Janzen, "Photoluminescence studies of porous silicon carbide", Appl. Phys. Lett., Vol. 66, p. 2250, 1995. https://doi.org/10.1063/1.113182
  28. X. Zhao, O. Schoenfield, S. Kumuro, Y. Aoyagi, and T. Sunago, "Quantum confinement in nanometersized silicon crystallites", Phys. Rev. B Vol. 50, p. 18654, 1994. https://doi.org/10.1103/PhysRevB.50.18654
  29. X. Li, Y. He, S. S. Talukdar, and M. T. Swihart, "Process for Preparing Macroscopic Quantities of Brightly Photoluminescent Silicon Nanoparticles with Emission Spanning the Visible Spectrum", Langmuir, Vol. 19, p. 8490, 2003. https://doi.org/10.1021/la034487b