DOI QR코드

DOI QR Code

Modeling Aided Lead Design of FAK Inhibitors

  • Madhavan, Thirumurthy (Centre for Bioinformatics, Department of Biochemistry, School of life sciences, University of Madras, Guindy campus)
  • Received : 2011.09.28
  • Accepted : 2011.12.22
  • Published : 2011.12.30

Abstract

Focal adhesion kinase (FAK) is a potential target for the treatment of primary cancers as well as prevention of tumor metastasis. To understand the structural and chemical features of FAK inhibitors, we report comparative molecular field analysis (CoMFA) for the series of 7H-pyrrolo(2,3-d)pyrimidines. The CoMFA models showed good correlation between the actual and predicted values for training set molecules. Our results indicated the ligand-based alignment has produced better statistical results for CoMFA ($q^2$ = 0.505, $r^2$ = 0.950). Both models were validated using test set compounds, and gave good predictive values of 0.537. The statistical parameters from the generated 3D-QSAR models were indicated that the data are well fitted and have high predictive ability. The contour map from 3D-QSAR models explains nicely the structure-activity relationships of FAK inhibitors and our results would give proper guidelines to further enhance the activity of novel inhibitors.

Keywords

References

  1. A. Richardson, and J. T. Parsons, "A mechanism for regulation of the adhesion-associated protein tyrosine kinase pp125FAK", Nature., Vol. 380, pp. 538-540, 1996. https://doi.org/10.1038/380538a0
  2. A. P Gilmore, and L. H. Romer, "Inhibition of focal adhesion kinase (FAK) signaling in focal adhesions decreases cell motility and proliferation", Mol. Biol. Cell., Vol 7, pp. 1209-1224. 1996. https://doi.org/10.1091/mbc.7.8.1209
  3. R. O. Hynes, "Cell adhesion: Old and new questions", Trends Cell biology., Vol. 9, pp. M33-M37, 1999. https://doi.org/10.1016/S0962-8924(99)01667-0
  4. D. Ilic, Y. Furuta, S. Kanazawa, N. Takeda, K. Sobue, N. Nakatsuji, S. Nomura, J. Fukimoto, M. Okada, T. Yamamoto, and S. Aizawa, "Reduced cell motility and enhanced focal adhesion contact formation in cells from FAK-deficient mice", Nature., Vol. 377, pp. 539-544, 1995. https://doi.org/10.1038/377539a0
  5. S. M. Frisch, K. Vuori, E. Ruoslahti, and P. Y. J. Chan-Hui, "Cell Biol., Vol. 134, pp. 793-799, 1996. https://doi.org/10.1083/jcb.134.3.793
  6. T. Miyazaki, H. Kato, M. Nakajima, M. Sohda, Y. Fukai, N. Masuda, R. Manda, M. Fukuchi, K. Tsukada, and H. Br. J. Kuwano, "FAK overexpression is correlated with tumour invasiveness and lymph node metastasis in oesophageal squamous cell carcinoma", J. Cancer., Vol. 89, pp. 140-145. 2003. https://doi.org/10.1038/sj.bjc.6601050
  7. S. K. Mitra, D. A. Hanson, and D. D. Schlaepfer, "Focal adhesion kinase: in command and control of cell motility" Nat. Rev. Mol. Cell Biol., Vol. 6, pp. 56-68, 2005. https://doi.org/10.1038/nrm1549
  8. H, Abedi, and I. Zachary, "Vascular endothelial growth factor stimulates tyrosine phosphorylation and recruitment to new focal adhesions of focal adhesion kinase and paxillin in endothelial cells", The Journal of biological chemistry., Vol. 272, pp. 15442-15451, 1997. https://doi.org/10.1074/jbc.272.24.15442
  9. I. Zachary, and E. Rozengurt, "Focal adhesion kinase (p125FAK): a point of convergence in the action of neuropeptides, integrins, and oncogenes", Cell., Vol. 71, pp. 891-894, 1992. https://doi.org/10.1016/0092-8674(92)90385-P
  10. K. Burridge, K. Fath, T. Kelly, G. Nuckolls, and C. Turner, "Focal adhesions: transmembrane junctions between the extracellular matrix and the cytoskeleton", Annual review of cell biology., Vol. 4, pp. 487-525, 1988. https://doi.org/10.1146/annurev.cb.04.110188.002415
  11. K. Burridge, C. E. Turner, and L. H. Romer, "Tyrosine phosphorylation of paxillin and pp125FAK accompanies cell adhesion to extracellular matrix: a role in cytoskeletal assembly", The Journal of cell biology. Vol. 119, pp. 893-903, 1992. https://doi.org/10.1083/jcb.119.4.893
  12. S. E. Blackshaw, J. D. Kamal, J. M. Lackie, "The dictionary of cell and molecular biology", San Diego: Academic Press., 1999.
  13. R. D. Cramer, D. E. Patterson, and J. D. Bunce, "Comparative molecular field analysis (CoMFA). 1. Effect of shape on binding of steroids to carrier proteins", J. Am. Chem. Soc., Vol. 110, pp. 5959-5967. 1988. https://doi.org/10.1021/ja00226a005
  14. G. Klebe, U. Abraham, and T. Mietzner, "Molecular similarity indices in a comparative analysis (CoMSIA) of drug molecules to correlate and predict their biological activity", J. Med. Chem., Vol. 37, pp. 4130-4146, 1994. https://doi.org/10.1021/jm00050a010
  15. H. Kubinyi, "Comparative molecular field analysis (CoMFA)", In The Encyclopedia of Computational Chemistry, John Wiley & Sons., Vol. 1, pp. 448- 460, 1998.
  16. M. D. M. Abdul Hameed, A. Hamza, J. Liu, X. Huang, and C. G. Zhan, "Human microsomal prostaglandin E synthase-1 (mPGES-1) binding with inhibitors and the quantitative structure-activity correlation", J. Chem. Inf. Modeling., Vol. 48, pp. 179-185, 2008. https://doi.org/10.1021/ci700315c
  17. C. L. Kuo, H. Assefa, S. Kamath, Z. Brzozowski, J. Slawinski, F. Saczewski, J. Buolamwini, and K. N. Neamati, "Application of CoMFA and CoMSIA 3D-QSAR and docking studies in optimization of mercaptobenzenesulphonamides as HIV-1 integrase inhibitors", J. Med. Chem., Vol. 47, pp. 385-399. 2004. https://doi.org/10.1021/jm030378i
  18. G. F. Yang, H. T. Lu, Y. Xiong, C G. Zhan, "Understanding the structure-activity and structure-selectivity correlation of cyclic guanine derivatives as phosphodiesterase-5 inhibitors by molecular docking, CoMFA and CoMSIA analyses", Bioorg. Med. Chem., Vol. 14, pp. 1462-1473. 2006. https://doi.org/10.1016/j.bmc.2005.09.073
  19. H. S. Choi, Z. Wang, W. Richmond, X. He , K. Yang, T. Jiang, D. Karanewsky, X. J. Gu , V. Zhou, Y. Liu, J. Che, C. C. Lee, J. Caldwell, T. Kanazawa, I. Umemura, N. Matsuura, O. Ohmori, T Honda, N Gray, and Y. He, "Design and synthesis of 7H-pyrrolo[ 2,3-d]pyrimidines as focal adhesion kinase inhibitors. Part 2", Boorg Med Chem Lett., Vol. 16, pp. 2689-2692, 2006. https://doi.org/10.1016/j.bmcl.2006.02.032
  20. Sybyl 8.1, Tripos Inc., St. Louis, MO 63144, USA.
  21. S. J. Cho, and A. Tropsha, "Cross-validated R2- guided region selection for comparative molecular field analysis: A simple method to achieve consistent results", J. Med. Chem., Vol. 38, pp.1060-1066, 1995. https://doi.org/10.1021/jm00007a003
  22. S. Wold, M. Sjostrom, and L. Eriksson, "PLSregression: a basic tool of chemometrics", Chemometrics and intell. lab. Sy., Vol. 58, pp. 109-130, 2001. https://doi.org/10.1016/S0169-7439(01)00155-1

Cited by

  1. Comparative Molecular Field Analysis of CXCR-2 Inhibitors vol.9, pp.2, 2011, https://doi.org/10.13160/ricns.2016.9.2.121
  2. Comparative Molecular Similarity Indices Analysis of CXCR-2 Inhibitors vol.9, pp.3, 2011, https://doi.org/10.13160/ricns.2016.9.3.177