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Abstract : The reconfigurable control systems based on feedback controls are utilized to compensate for damages

of actuators in control systems. Such systems have multiple feedback controls and switch them in accordance with

the degrees of the failures of the actuators. In order to be able to assess those systems, this paper develops a

method to obtain reliabilities of reconfigurable dynamical systems which are interconnected in parallel / series con-

figuration. By calculating reliabilities of interconnected dynamical systems, it is possible to assess many dynamical

systems by comparing their reliabilities. Firstly, reliabilities of subsystems are obtained according to the definitions

of the failures in terms of robust reliability for each subsystem. Then, the reliability of overall system is calculated

from reliabilities of subsystems, using the methodology employed for probabilistic safety assessment. Failure rates

of subsystems with feedbacks for reconfiguration change in certain time periods because of the switching of feed-

back controls. In order to deal with this, combinations of subsystems which compose overall system for each time

period are derived by the methodology mentioned above and then integrated to calculate the reliability of overall

system for a specific time. An illustrative example shows the validity and details of the proposed method.
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1. Introduction

The reconfigurable control systems based on feedback

controls are utilized to compensate for damages of actu-

ators in control systems [1]. Such systems have multiple

feedback controls and switch them in accordance with

the degrees of the failures of the actuators. In order to

be able to assess those systems, methodologies in terms

of robust reliability have been introduced [2]. On those

methodologies, failures of dynamical systems are defined

firstly. In this situation, the dynamical systems are

regarded as failure if outputs of the dynamical systems

exceed the designated limit or the convex safe region

[2]. Then, failure probabilities of the dynamical systems

are derived from their covariance matrices. Finally,

parameters of the dynamical systems are determined so

as to minimize the failure probabilities.

Those failure probabilities can be applied as criteria for

the designs of different dynamical systems. For instance,

by comparing failure probabilities of the different dynami-

cal systems, we can determine which dynamical systems

are more reliable than others.

In this paper, the methodology for calculating unreli-

abilities (failure probabilities) of dynamical systems

which are interconnected in parallel / series configura-

tion, and have reconfigurable control consisted of mul-

tiple feedbacks is considered.

By interconnecting the dynamical systems, dependen-

cies of covariance matrices between them arise. In addi-

tion, failure rates of subsystems with feedbacks for

reconfiguration change in certain time periods because

of the switching of feedback controls. 

In order to cope with these situations, we propose the

method to calculate unreliabilities of the dynamical sys-

tems which have stochastic inputs and are intercon-

nected in parallel / series configuration by applying the

methodology employed for probabilistic safety assess-

ment. As for multiple feedback controls, those systems

can be regarded as phased mission systems [3-4] due to

the changes of the failure rates in certain time periods.

Thus, phased mission systems approach is introduced to

calculate unreliablity of overall system. In other words,

combinations of subsystems which compose overall sys-

tem for each time period are derived firstly and then*Corresponding author: msatoshi@t03.mbox.media.kyoto-u.ac.jp
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integrated to calculate unreliability of overall system for

a specific time. Finally, an example of the dynamical

system which has multiple feedback controls for recon-

figurable control is presented. This example shows the

validity and the details of the proposed method, by

illustrating how to calculate unreliabilities of overall

systems.

The rest of the paper is organized as follows. Section 2

describes the relationship between subsystems and covari-

ance matrices. Section 3 presents how to derive failure

probabilities of subsystems using their covariance matrices.

In section 4, the method to calculate unreliabilities of over-

all systems from failure probabilities of subsystems is pre-

sented. Section 5 is an example. In section 6, conclusions

are shown.

2. Subsystems and covariance matrices

We consider subsystem k :

(1)

where the state covariance matrix is,

E{xkxk
T}=Pk (2)

the input covariance matrix is,

E{ukuk
T}=Qk (3)

and the intensity of the white noise is Sk.

Qk and Sk are already given.

Then, the state covariance matrix Pk for stationary

response is given by the solution of the Lyapunov equa-

tion,

(4)

This equation has the same form when the input

covariance matrix Qk does not exist. 

The proof of this equation is shown in the appendix

section.

The output covariance matrix E{zkzk
T} is derived as:

E{zkzk
T}= E{Ckxkxk

TCk
T} = CkPkCk

T (5)

The covariance matrix of the differentiation of zk is

derived as

(6)

where CkEk=0 is assumed.

If subsystem k has multiple feedback controls for

reconfigurable control, 

uk(t)=-Fk,jxk(t) (j=1,2,…) (7)

is substituted for Eq. (1). The feedback controls change

in accordance with the degrees of failures of actuators

[1]. If the degrees of failures of actuators worsen, feed-

back control switches from status j = 1 to status j = 2. If

the degrees of failures aggravate more, the number of the

status increases accordingly.

In such cases, the equation

(8)

can be yielded from Eq. (1) for subsystem k with

reconfigurable control. Then, the Lyapunov equation for

Eq. (8) becomes

(9)

Also, the covariance matrix of the differentiation of zk
is derived as

(10)

where CkEk=0 is assumed.

3. Failure probabilities of subsystems

In this section, the failure probability of subsystem k

is presented [2]. Subsystem k is regarded as failure if

outputs zk of subsystem k exceed the designated limit or

the convex safe region in this situation.

The failure probability of subsystem k is approxi-

mately derived as

(11)

Σk:
x
·
k t( ) Akxk t( ) Bkuk t( ) Ekwk t( )+ +=

zk t( ) Ckxk t( )=⎩
⎨
⎧

AkPk PkAk

T
EkSkEk

T
0=+ +

 

Σk:
x
·
k t( ) Ak BkFk j,–( )xk t( ) Ekwk t( )+=

zk t( ) Ckxk t( )=⎩
⎨
⎧

Ak BkFk j,–( )Pk Pk Ak BkFk j,–( )T EkSkEk

T
0=+ +

E z
·
kz
·
k

T
{ } Ck Ak BkFk j,–( )Pk Ak BkFk j,–( )TCk

T
=

PFk Dsk T,( ) 1 vzk   
+

SDk( )T–{ }exp–≈
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The failure rate or the mean out crossing rate of sub-

system k is obtained as

(12)

where the notation i(i=1,…,n) denotes the element of

the output zk(n-dimension), Dsk denotes the hypercubic

safe region for subsystem k, SDk denotes the boundary

of Dsk, (|zki|<) βki denotes the value of the safe region for

the definition of the failure of the subsystem k. Fig. 1

shows an example for a three-dimensional space.

The following equations hold.

wki= z-zkinki (13)

(14)

p(wki|zki=bki) may be readily calculated since the dis-

tribution is gaussian [5]. nki is the unit outward normal

vector at the boundary. The stationary variances ,

 can be calculated from Eqs. (5) and (6).

4. Unreliabilities of overall systems

In this section, unreliabilities of overall systems are

derived from failure probabilities of subsystems. Since

the failure rates of subsystems which contain multiple

feedback controls change every certain time periods

(phases), structures of overall systems also change every

phases. Thus the interconnected dynamical systems with

multiple feedbacks for reconfigurable control can be

regarded as a kind of phased mission systems [3-4].

Using phased mission systems approach, the way to

derive unreliabilities of overall systems is presented.

4.1 State variables

In order to represent statuses of subsystems and to

calculate unreliabilities of overall systems at specific

time t, the following binary variable or state variable is

introduced.

(15)

Then the following simplification rules hold. 

(16)

‘(17)

The term  represents the occurrence of

failure of subsystem k between time t1 and time t2.

(  is the negated term of .)

Thus, relationships between failure probabilities and

state variables are established as follows.

(18)

(19)

4.2 System states for phase l

The failure rates of subsystems which contain multi-

ple feedback controls change every phases (i.e. when

one feedback control switches to another feedback

control).

So, structures of overall systems change among

phases. To deal with this, structures of overall systems

for each phase must be described in terms of state

variables. We introduce system states Yl(t) in order to

describe structures of overall systems for phase l

(l=1,2,3,…). The number of the phase (l) changes when

the feedback control is switched due to aggravation of

the actuators.

(20)

Interconnected systems considered are consisted of the

combinations of series systems and parallel systems.

Then, system states of parallel systems and series sys-

tems are derived as follows.

4.2.1 System states of parallel systems

We consider an interconnected system consisted of M

subsystems in parallel configuration. Then, the system

vz
k

+
SDk( ) vz

ki
βki( ) p wki zki βki=( ) wkid

∆
ki

∫
i 1=

n

∑=

vz
ki

βki( )
σ

z
·
ki

πσz
ki

-----------
βki

2

2σz
ki

2
-----------–

⎝ ⎠
⎜ ⎟
⎛ ⎞

exp=

σz
ki

σ
z
·
ki

Xk t( )
1if subsystem k is in failure at time t

0 otherwise⎩
⎨
⎧

=

Xk t1( )Xk t2( ) Xk t1( )=     for    t1 t2≤

Xk t1( ) Xk t2( ) Xk t2( ) for  t1 t2≤=∨

Xk t1( )Xk t2( )

Xk t1( ) Xk t1( )

Pr Xk t1( )Xk t2( ) 1={ } PFk DSk t2,( ) PFk DSk t1,( )–=

Pr Xk t1( ) 1={ } PFk DSk t1,( )=

Yl t( )
1if overall system is in  failure at time t  in phase l

0 otherwise⎩
⎨
⎧

=

Fig. 1. Safe region for a three-dimensional space.
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state of the overall system at time t during phase l

becomes

(21)

4.2.2 System states of series systems

We consider an interconnected system consisted of M

subsystems in series configuration. Then, the system

state of the overall system at time t during phase l

becomes

(22)

4.3 Unreliabilities of overall systems at time t

Unreliabilities of overall systems at specific time t

during phase n can be derived from combinations of

system states at each phase. The failure of overall sys-

tem which occurs at time t in phase n requires that

{failure does not occur before the phase n} AND {fail-

ure firstly occurs at phase n}. Thus, failure occurrence

conditions of overall systems at time t during phase n,

denoted by binary variable φn(t), can be represented in

terms of Yl(t), as :

(23)

where tl
E denotes the end time of phase l.

Then, unreliabilities of overall systems at specific

time t during phase n, PFsys,n(t) can be obtained from

the failure occurrence conditions of overall system as : 

(24)

where E{} denotes the expectation operation.

5. Example

We consider an interconnected dynamical system con-

sisted of three subsystems as shown in Fig. 2 for exam-

ple. Subsystem 1 has multiple feedback controls F1,j for

reconfigurable control. Those multiple feedback controls

have three stages (j=1, 2, 3). Subsystem 1 operates with

the feedback control j=1 at first. If the failures of the

actuators of subsystem 1 worsen to a certain level, the

feedback control of subsystem 1 switches from j=1 to

j=2. If the failures of the actuators of subsystem 1

aggravate more, the feedback control of subsystem 1

switches from j=2 to j=3.

In this example, the time period when the feedback

control j=1 operates is denoted as phase 1, the time

period when the feedback control j=2 operates is

denoted as phase 2 and the time period when the feed-

back control j=3 operates is denoted as phase 3.

Each subsystem is assigned as

(25)

and

.

The definitions of the failures, or the safe regions of

each subsystem are determined as β11=20, β21=30,

β31=20. 

The durations of the phases are 10[s] for each. As for

subsystem 1, 

u1(t) = -F1,jx1(t) (j = 1,2,…) (26)

is substituted, and

Then, system states Yl(t) for each phase can be derived

as :

(27)

 

 

 

 

 

 

 

Y1 t( ) X1 1, t( ) X2 t( )X3 t( )∨=

Fig. 2. Block diagram of interconnected system.
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(28)

(29)

where X1,j(t) denotes the failure of subsystem 1 with the

feedback control j, and tl
S, tl

E denote the start / end time

of phase l.

Using state variable Yl(t), failure occurrence condi-

tions of overall system at time t during phase 3 can be

expressed as:

(30)

After all, unreliability of overall system at time t dur-

ing phase 3, PFsys,3(t) is calculated as:

(31)

The relationship between time and unreliability is

obtained as shown in Fig. 3 through procedures men-

tioned above.

6. Conclusions

In this paper, we proposed the method to calculate

unreliabilities of the dynamical systems which are intercon-

nected in parallel / series configuration with reconfigurable

control. By introducing stochastic inputs for each sub-

system and the method employed for probabilistic safety

assessment, it enables us to assess not only a single

dynamical system which does not have any inputs, but

interconnected dynamical systems which have stochastic

inputs. Interconnected dynamical systems with

reconfigurable control have multiple feedback controls

which are switched in accordance with the degrees of

the failures of the actuators. So, failure rates of

subsystems which have multiple feedback controls

change every certain time periods (phases). To assess

unreliabilities of such systems, phased mission systems

approach has been introduced. System states at each

phase have been derived firstly and then unreliabilities

for each phase have been obtained from system states

and failure probabilities of subsystems. By introducing

phased mission systems approach, it became possible to

calculate unreliabilities of interconnected systems with

reconfigurable control at specific time t. This approach

will be applicable to systems whose overall structures

change among phases to derive unreliabilities, and the

analysis of such systems will be a next step for the

research.

Appendix

Discrete system of Eq. (1) yields the following state

covariance matrix, 

(32)

where  denotes the means of  and

, (33)

, (34)

, (35)

∆ = ti+1− ti are assumed [5]. (36)

Substituting Eqs. (33)-(36) into Eq. (32) yields

Y2 t( ) X1 2, t( )X1 2, t2
s( ) X2 t( )X3 t( )∨=

Y3 t( ) X1 3, t( )X1 3, t3
s( ) X2 t( )X3 t( )∨=

 

 

 

xk tt 1+( ) xk tt 1+( )

Akd I Ak∆+=

Bkd Bk∆=

Ekd Ek∆=

Fig. 3. Relationship between time and unreliability.
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(37)

Let us define Pk(ti) and Sk(ti) and substitute them into

Eq. (37).

(38)

(39)

Then the following equation holds.

(40)

The covariance matrix of the white noise for discrete

system must be established as follows in order to rep-

resent equally as it is seen in continuous system [5].

(41)

Finally, Eq. (4) holds from Eqs. (40) and (41) when

is applied and the steady state is considered.
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