DOI QR코드

DOI QR Code

Hydrogel의 팽윤-수축 거동에 미치는 Phenylboronic Acid의 영향

Effect of Phenylboronic Acid on the Swelling-Shrinking Behavior of Hydrogel

  • Lee, Jong-Ho (Department of Chemistry, Hanseo University) ;
  • Oh, Han-Jun (Department of Materials Science, Hanseo University) ;
  • Cho, Donghwan (Department of Polymer Science and Engineering, Kumoh National Institute of Technology) ;
  • Han, In Suk (Department of Chemical and Fuels Engineering, University of Utah)
  • 투고 : 2011.05.24
  • 심사 : 2011.06.21
  • 발행 : 2011.06.30

초록

본 연구에서는 glucose oxidase와 catalase를 혼합 분산시키지 않고 phenylboronic acid (PBA)을 이용하여 glucose에 반응하는 hydrogel을 합성하였으며, 합성된 hydrogel의 pH 및 glucose 농도 및 이온 농도에 따른 팽윤-수축 거동에 대하여 연구하였다. PBA를 사용하여 합성된 hydrogel은 glucose의 농도에 따라 팽윤비가 증가되는 것으로 나타났으며, pH의 변화에 따라 급격한 부피 변동성을 나타냈다. 그러나 이온농도에 따른 부피의 변화는 상대적으로 작게 나타난 것으로 보아 안정적인 hydrogel임을 확인할 수 있었다.

In the present study, glucose-sensitive hydrogels using phenylboronic acid (PBA) without glucose oxidase and catalase were prepared. The swelling-shrinking behavior of the hydrogel according to the variation of pH and glucose and ionic concentrations was investigated. The swelling ratio of the hydrogel containing PBA increased with increasing the glucose concentration and the volume was very sensitively varied with the pH. However, the ionic concentration did not change significantly the relative swelling ratio on the hydrogel, indicating that the hydrogel was dimensionally stable.

키워드

참고문헌

  1. J. Ricka and T. Tanaka, Macromolecules, 17, 2916 (1984). https://doi.org/10.1021/ma00142a081
  2. T. Okano, Y. H. Bae, H. Jacobs, and S. W. Kim, J. Control. Release, 11, 255 (1990). https://doi.org/10.1016/0168-3659(90)90138-J
  3. R. Yoshida, K. Sakai, T. Okano, and Y. Sakurai, Adv. Drug Deliv. Rev., 11, 85 (1993). https://doi.org/10.1016/0169-409X(93)90028-3
  4. A. S. Hoffman, J. Control. Release, 6, 297 (1987). https://doi.org/10.1016/0168-3659(87)90083-6
  5. T. Aoki, M. Kawashima, H. Katono, K. Sanui, N. Ogata, T. Okano, and Y. Sakurai, Macromolecules, 27, 949 (1994).
  6. N. Negishi, T. Iida, K. Ishihara, and I. Shinohara, Macromol. Chem. Rapid Commun., 2, 617 (1981). https://doi.org/10.1002/marc.1981.030020915
  7. S. Sato, S. Y. Jeong, J. C. McRea, and S. W. Kim, J. Control. Release, 1, 67 (1984). https://doi.org/10.1016/0168-3659(84)90022-1
  8. G. Albin, T. A. Horbett, and B. D. Ratner, J. Control. Release, 2, 153 (1985). https://doi.org/10.1016/0168-3659(85)90041-0
  9. K. Makino, E. J. Mack, T. Okano, and S. W. Kim, J. Control. Release, 12, 235 (1990).
  10. S. Wild, G. Roglic, A. Green, R. Sicree, and H. King, Diabetes Care, 27, 1047 (2004). https://doi.org/10.2337/diacare.27.5.1047
  11. V. Rayaine, C. Ancla, and B. Cartari, J. Control. Release, 132, 2 (2008). https://doi.org/10.1016/j.jconrel.2008.08.009
  12. D. Shiino, K. Kataoka, Y. Koyama, M. Yokoyama, T. Okano, and Y. Sakurai, Biomaterials, 15, 121 (1994). https://doi.org/10.1016/0142-9612(94)90261-5
  13. M. J. Abdekhodaie and X. Y. Wu, J. Membrane Science, 335, 21 (2009). https://doi.org/10.1016/j.memsci.2009.02.029
  14. A. Serres, M. Baudys, and S. W. Kim, Pharm. Res., 13, 196 (1996). https://doi.org/10.1023/A:1016026711364
  15. Y. H. Bae and S. W. Kim, Adv. Drug Del. Rev., 11, 109 (1993). https://doi.org/10.1016/0169-409X(93)90029-4
  16. D. A. Gough and J. Y. Licisano, Anal. Chem., 60, 1272 (1988). https://doi.org/10.1021/ac00164a007
  17. L. A. Klumb and T. A. Horbett, J. Control. Release, 18, 59 (1992). https://doi.org/10.1016/0168-3659(92)90212-A
  18. G. Reach and G. S. Wilson, Anal. Chem., 64, 381 (1992).
  19. H. Fang, G. Kaur, and B. Wang, J. Fluores., 14, 481 (2004). https://doi.org/10.1023/B:JOFL.0000039336.51399.3b
  20. D. Jeong, J. J. Magda, and I. S. Han, Macromolecules, 33, 3332 (2000). https://doi.org/10.1021/ma992098b
  21. D. Shiino, Y. Murata, A. Kubo, Y. J. Kim, K. Kataoka, Y. Koyama, A. Kikuchi, M. Yokoyama, Y. Sakurai, and T. Okano, J. Control. Release, 37, 269 (1995). https://doi.org/10.1016/0168-3659(95)00084-4
  22. W. Yang, H. He, and D. G. Drueckhammer, Angew. Chem. Int. Ed., 40, 1714 (2001).
  23. G. Ye and X. Wang, Biosensor and Bioelectronics, 26, 772 (2010). https://doi.org/10.1016/j.bios.2010.06.029
  24. R. A. Etchenique and E. J. Calvo, Anal. Chem., 69, 4833 (1997). https://doi.org/10.1021/ac970413r
  25. V. L. Alexeev, A. C. Sharma, A. V. Goponenko, S. Das, I. K. Lednev, C. S. Wilcox, D. N. Finegold, and S. A. Asher, Anal. Chem., 75, 2316 (2003). https://doi.org/10.1021/ac030021m
  26. Y. Zhang, Y. Guan, and S. Zhou, Biomacromolecules, 7, 3196 (2006). https://doi.org/10.1021/bm060557s