DOI QR코드

DOI QR Code

Magnetic Mineral Identification in Meteorites

잔류자화비를 이용한 운석의 자성광물 판별

  • Kim, In-Ho (Department of Geology and Earth Environmental Sciences, Chungnam National University) ;
  • Yu, Yong-Jae (Department of Geology and Earth Environmental Sciences, Chungnam National University)
  • 김인호 (충남대학교 지질환경과학과) ;
  • 유용재 (충남대학교 지질환경과학과)
  • Received : 2011.03.09
  • Accepted : 2011.03.23
  • Published : 2011.03.31

Abstract

Meteorites are extraterrestrial solid rock fragments that fell from the outer space. Investigating mineral magnetic properties of the Meteorites is essential in understanding the evolution of planets and asteroids in the Solar System. In particular, magnetic characterization of magnetic mineral can provide constraints on the progress of differentiation in ancient planetary bodies. In the present study, ratio of thermoremanent magnetization (TRM) over saturation isothermal remanent magnetization (SIRM) was applied to diagnose the magnetic minerals in meteorites and igneous rocks. Distinctive classification of TRM/SIRM suggests that kamacite, tetrataenite, magnetite, and (Cr,Ti)-rich iron oxide are responsible for the magnetization of H5 Richardton, LL6 St. Severin, ALH84001, and DaG476, respectively. The TRM/SIRM ratio could be an efficient tool in identifying magnetic minerals especially when rocks or meteorites contain unstable material under heating.

운석은 모암인 소행성(asteroid)이나 미세소행성(planetesimal)에서 충돌에 의해 분리된 후, 태양계 내의 공간을 배회하다가 지구의 중력에 이끌려 지표에 떨어진 후 수집된 돌덩이다. 따라서 생성 초기의 지구를 포함하는 태양계 내 지구형 행성의 생성 초기와 진화과정을 규명하려면 원시 태양계의 정보를 간직하고 있는 운석의 물리/화학적 분석이 반드시 필요하다. 특히 열잔류자화(thermoremanent magnetization, TRM) 대비 포화등온잔류자화(saturation isothermal remanent magnetization, SIRM)의 비율과 자화를 유도하는 자기장 강도의 상관관계를 이용하면 운석이 함유하는 자성광물을 판별할 수 있다. TRM/SIRM 비를 이용하여 2종류의 미분화운석(H5 Richardton, LL6 St. Severin)과 2종류의 화성기원 분화운석(ALH84001, DaG476)에 대해 자성광물 판별을 시도하였다. 실험 결과 H5 Richardton, LL6 St. Severin, ALH84001, DaG476의 주 자성광물이 각각 카마사이트, 테트라테나이트, 자철석, 크롬티탄함유철석임을 판별하였다.

Keywords

References

  1. Amelin, Y., Krot, A.N., Hutcheon, I.D., and Ulyanov, A.A. (2002) Lead isotopic ages of chondrules and calcium- aluminum-rich inclusions. Science, 297, 1678-1683. https://doi.org/10.1126/science.1073950
  2. Amelin, Y., Ghosh, A., and Rotenburg, E. (2005) Unraveling the evolution of chondrite parent asteroids by precise U-Pb dating and thermal modeling. Geochim. Cosmochim. Acta, 69, 505-518. https://doi.org/10.1016/j.gca.2004.05.047
  3. Antretter, M., Fuller, M., Scott, E., Jackson, M., Moskowitz, B., and Solheid, P. (2003) Paleomagnetic record of Martian meteorite ALH84001. Jour. Geophys. Res., 108(E6), 5049, doi:10.1029/2002JE001979.
  4. Borg, L.E., Connelly, J.N., Nyquist, L.E., Shih, C.Y., Wiesmann, H., and Reese, Y. (1999) The age of the carbonates in martian meteorite ALH84001. Science, 286, 90-94. https://doi.org/10.1126/science.286.5437.90
  5. Borg, L.E., Nyquist, L.E., Wiesmann, H., Shih, C.Y., and Reese, Y. (2003) The age of Dar al Gani 476 and the differentiation history of the Martian meteorites inferred from their radiogenic isotopic systematics. Geochim. Cosmochim. Acta, 67, 3519-3536. https://doi.org/10.1016/S0016-7037(03)00094-2
  6. Bouvier, A., Blichert-Toft, J., Moynier, F., Vervoort, J.D., and Albarède, F. (2007) Pb-Pb dating constraints on the accretion and cooling history of chondrites. Geochim. Cosmochim. Acta, 71, 1583-1604. https://doi.org/10.1016/j.gca.2006.12.005
  7. Bowring, S.A., and Williams, I.S. (1999) Priscoan (4.00 -4.03 Ga) orthogneisses from northwestern Canada. Contrib. Mineral. Petrol., 134, 3-16. https://doi.org/10.1007/s004100050465
  8. Clarke, R.S. and Scott, E.R.D. (1980) Tetrataenite-ordered Fe-Ni, a new mineral in meteorites. Am. Mineral., 65, 624-630.
  9. Dunlop, D.J. and Kletetschka, G. (2001) Multidomain hematite: A source of planetary magnetic anomalies? Geophys. Res. Lett., 28, 3345-3348. https://doi.org/10.1029/2001GL013125
  10. Garrick-Bethell, I. and Weiss. B.P. (2010) Kamacite blocking temperatures and applications to lunar magnetism. Earth Planet. Sci. Lett., 294, 1-7. https://doi.org/10.1016/j.epsl.2010.02.013
  11. Hutchison, R. (2004) Meteorites: A petrologic, chemical, and isotopic synthesis. Cambridge University Press, Cambridge. 506p.
  12. Kletetschka, G., Acuna, M.H., Kohout, T., Wasilewski, P.J., and Connerney, J.E.P. (2004) An empirical scaling law for acquisition of thermoremanent magnetization. Earth Planet. Sci. Lett., 226, 521-528. https://doi.org/10.1016/j.epsl.2004.08.001
  13. Kletetschka, G., Fuller, M.D., Kohout, T., Wasilewski, P.J., Herrero-Bervera, E., Ness, N.F. and Acuna, M.H. (2006) TRM in low magnetic fields: A minimum field that can be recorded by large multidomain grains. Phys. Earth Planet. Inter., 154, 290-298. https://doi.org/10.1016/j.pepi.2005.07.005
  14. Krot, A.N., Keil, K., Goodrich, C.A., Scott, E.R.D., and Weisberg, M.K. (2004) Classification of Meteorites. In: Davis, A.M. (ed.), Treatise on Geochemistry, Vol. 1, Meteorites, Comets, and Planets, Elsevier, Oxford, 83-128.
  15. Neel, L. (1949) Theorie du trainage magnetique des ferromagneniques en grains fins avec applications aux terres cuites. Ann. Geophys., 5, 99-136.
  16. Rochette, P., Lorand, J.-P., Fillion, G., and Sautter, V. (2001) Pyrrhotite and the remanent magnetization on SNC meteorites: a changing perspective on Martian magnetism. Earth Planet. Sci. Lett., 190, 1-12. https://doi.org/10.1016/S0012-821X(01)00373-9
  17. Taylor, L.A. (1979) Paleointensity determinations at elevated temperatures: Sample preparation technique, Proc. Lunar Planet. Sci. Conf., 10, 2183-2187.
  18. Weiss, B.P., Kirschvink, J.L., Baudenbacher, F.J., Vali, H., Peters, N.T., MacDonald, F.A., and Wikswo, J.P. (2000) A low temperature transfer of ALH84001 from Mars to Earth. Science, 290, 791-795. https://doi.org/10.1126/science.290.5492.791
  19. Weiss, B.P., Vali, H., Baudenbacher, F.J., Kirschvink, J.L., Stewart, S.T., and Shuster, D.L. (2002) Records of an ancient Martian magnetic field in ALH84001. Earth Planet. Sci. Lett., 200, 449-463.
  20. Wilde, S.A., Valley, J.W., Peck, W.H., and Graham, C.M. (2001) Evidence from detrital zircons for the existence of continental crust and oceans on Earth 4.4 Gyr ago. Nature, 409, 175-178. https://doi.org/10.1038/35051550
  21. Yu, Y., Doh, S.-J., Kim, W., and Min, K. (2009) Ancient stable magnetism of the Richardton H5 chondrite, Phys. Earth Planet. Inter., 177, 12-18. https://doi.org/10.1016/j.pepi.2009.07.003
  22. Yu, Y. (2010) Paleointensity determination using anhysteretic remanence and saturation isothermal remanence, Geochem. Geophy. Geosys., 11, Q02Z12, doi:10.1029/ 2009GC002804.
  23. Yu, Y., Doh, S.-J., Kim, W., and Min, K. (2011) Origin of stable remanent magnetization in the LL6 Chondrite, St. Severin. Phys. Earth Planet. Inter., submitted.