DOI QR코드

DOI QR Code

적응적 배타적 논리합을 이용한 깊이정보 맵 코딩 방법

A Depth-map Coding Method using the Adaptive XOR Operation

  • 김경용 (경희대학교 전자정보대학 컴퓨터공학과) ;
  • 박광훈 (경희대학교 전자정보대학 컴퓨터공학과)
  • Kim, Kyung-Yong (Media Lab., College of Electronics and Information, Kyung Hee University) ;
  • Park, Gwang-Hoon (Media Lab., College of Electronics and Information, Kyung Hee University)
  • 투고 : 2010.09.07
  • 심사 : 2011.03.07
  • 발행 : 2011.03.30

초록

본 논문에서는 실제 영상과는 다른 특성을 지니는 깊이정보 맵의 효율적인 부호화 방법을 제안한다. 깊이정보 맵은 객체 내부 혹은 배경 부분에서 상당히 완만한 특성을 지니지만, 객체 경계 부분에서는 아주 날카로운 에지 성분이 존재한다는 특징이 있다. 그리고 깊이정보 맵을 비트평면 단위로 분리하였을 때, 비트평면 간 완전일치/반전일치되는 특성이 객체 경계 부분에서 자주 발생한다는 특징이 있다. 그래서 본 논문에서는 객체 경계 부분에서 비트평면의 이진 영상간 일치여부를 적절하게 이용하기 위하여 깊이정보 맵을 비트평면 단위로 분리하여 비트평면 간 적응적 XOR 연산을 이용한 블록 기반 비트평면 부호화 방법을 제안한다. 또한 비트평면 단위 영상 부호화 방법과 DCT 기반 동영상 압축 방법(H.264/AVC)의 장점을 적절하게 이용하기 위하여 블록 단위 비트평면 부호화 방법과 기존의 블록 단위 동영상 부호화 방법을 적응적으로 선택하여 부호화하였다. 실험 결과 제안하는 방법이 H.264/AVC보다 BD-PSNR이 0.9 dB ~ 1.5 dB 향상되었고 BD-rate가 11.8 % ~ 20.8 % 감소되었다. 또한 제안하는 방법이 블록 기반 적응적 깊이정보 맵 부호화 방법보다 BD-PSNR이 0.5 dB ~ 0.8 dB 향상되었고 BD-rate가 7.7 % ~ 12.2 % 감소되어 제안하는 방법의 우수함을 확인할 수 있었다. 또한 복원된 깊이정보 맵을 이용하여 생성된 가상 영상 간의 비교에서 제안하는 방법이 DCT 기반 동영상 압축 방법보다 주관적 화질이 향상된 것을 확인할 수 있었으며, 블록 기반 적응적 깊이정보 맵 부호화 방법과 비교하여 주관적 화질이 비슷하다는 것을 확인 할 수 있었다.

This paper proposes an efficient coding method of the depth-map which is different from the natural images. The depth-map are so smooth in both inner parts of the objects and background, but it has sharp edges on the object-boundaries like a cliff. In addition, when a depth-map block is decomposed into bit planes, the characteristic of perfect matching or inverted matching between bit planes often occurs on the object-boundaries. Therefore, the proposed depth-map coding scheme is designed to have the bit-plane unit coding method using the adaptive XOR method for efficiently coding the depth-map images on the object-boundary areas, as well as the conventional DCT-based coding scheme (for example, H.264/AVC) for efficiently coding the inside area images of the objects or the background depth-map images. The experimental results show that the proposed algorithm improves the average bit-rate savings as 11.8 % ~ 20.8% and the average PSNR (Peak Signal-to-Noise Ratio) gains as 0.9 dB ~ 1.5 dB in comparison with the H.264/AVC coding scheme. And the proposed algorithm improves the average bit-rate savings as 7.7 % ~ 12.2 % and the average PSNR gains as 0.5 dB ~ 0.8 dB in comparison with the adaptive block-based depth-map coding scheme. It can be confirmed that the proposed method improves the subjective quality of synthesized image using the decoded depth-map in comparison with the H.264/AVC coding scheme. And the subjective quality of the proposed method was similar to the subjective quality of the adaptive block-based depth-map coding scheme.

키워드

참고문헌

  1. ISO/IEC JTC1/SC29/WG11, "Draft Report on Experimental Framework for 3D Video Coding," N11478, Geneva, Switzerland, July 2010.
  2. M. Tanimoto, "Overview of Free Viewpoint Television," Signal Processing: Image Communication, Vol. 21, No. 6, pp.454-461, July 2006. https://doi.org/10.1016/j.image.2006.03.009
  3. A. Smolic, K. Mueller, N. Stefanoski, J. Ostermann, A. Gotchev, G.B. Akar, G.A. Triantafyllidis and A.Koz: "Coding Algorithms for 3DTV-A Survey," IEEE Trans. οn Circuits and Systems for Video Technology, Vol. 7, Issue 11, pp. 1606-1621, November 2007. https://doi.org/10.1109/TCSVT.2007.909972
  4. ITU-T Recommendation H.264 and ISO/IEC 14496-10 (MPEG-4 Part 10 AVC), "Advanced Video Coding for Generic Audiovisual Services," Version 1: March 2003, Version 2: May 2004, Version 3: March 2005, Version 4: September 2005, Version 5 and Version 6: June 2006, Version 7: April 2007, Version 8: July 2007.
  5. Y. Mori, N. Fukushima, T. Yendo, T. Fujii, M. Tanimoto, "View generation with 3D warping using depth information for FTV," Image Communication, Vol. 24 No. 1-2, pp. 65-72, January 2009.
  6. M. Tanimoto, T. Fujii, "View synthesis algorithm in view synthesis reference software 2.0 (VSRS 2.0)," ISO/IEC JTC1/SC29/WG11 M16090, Lausanne, Switzerland, February 2009.
  7. K.Y. Kim, G.H. Park, D.Y. Suh, "Adaptive Depth-map Coding for 3D-Video," IEICE Trans. on INF. & SYST., Vol. E93-D, No. 8, pp. 2262-2272, August 2010. https://doi.org/10.1587/transinf.E93.D.2262
  8. K.Y. Kim, G.H. Park, D.Y. Suh, "Bitplane-based lossless depth-map coding," SPIE Optical Engineering, Vol. 49, No. 6, 067403, June. 2010. https://doi.org/10.1117/1.3457668
  9. T. Wiegand, H. Schwarz, A. Joch, F. Kossentini, and G.J. Sullivan, "Rate-Constrained Coder Control and Comparison of Video Coding Standards," IEEE Transactions on Circuits and Systems for Video Technology, Vol. 13, No. 7, pp. 688-703, July 2003. https://doi.org/10.1109/TCSVT.2003.815168
  10. J. R. Bitner, G. Ehrlich, and E. M. Reingold, "Efficient generation of the binary reflected gray code and its applications," Commun. ACM, Vol. 19, No. 9, pp.517-521, September 1976. https://doi.org/10.1145/360336.360343
  11. ISO/IEC 14496-2 (MPEG-4 Visual), "Coding of Audio-Visual Objects-Part 2: Visual," Version 1: April 1999, Version 2: February 2000, Version 3: May 2004.
  12. N. Brady, and F. Bossen, "Shape compression of moving objects using context-based arithmetic encoding," Signal Processing: Image Communication, Vol. 15, No. 7, pp. 601-617, May 2000. https://doi.org/10.1016/S0923-5965(99)00047-8
  13. N. Brady, F. Bossen, and N. Murphy, "Context-based arithmetic encoding of 2D shape sequences," Special session on shape coding (ICIP '97), Vol. 1, pp. 29-32, 1997.
  14. F. Heinrich-Hertz-Institut, "H.264 Reference Software Version JM13.2," http://iphome.hhi.de/suehring/tml, May 2008.
  15. D. Marpe, H. Schwarz, and T. Wiegand, "Context-Based Adaptive Binary Arithmetic Coding in the H.264/AVC Video Compression Standard," IEEE Transactions on Circuits and Systems for Video Technology, Vol. 13, No. 7, pp. 620-636, July 2003. https://doi.org/10.1109/TCSVT.2003.815173
  16. G. Bjontegaard, "Calculation of average PSNR differences between RD-curves," ITU-T SG16 Q.6, VCEG-M33, Texas, USA, April 2001.