DOI QR코드

DOI QR Code

HDR Image Acquisition from Two LDR Images

두 장의 LDR 영상을 이용한 HDR 영상 취득 기법

  • Park, Tae-Jang (School of Information and Communication Engineering, Inha Univ.) ;
  • Park, In-Kyu (School of Information and Communication Engineering, Inha Univ.)
  • 박태장 (인하대학교 정보통신공학부) ;
  • 박인규 (인하대학교 정보통신공학부)
  • Received : 2010.12.31
  • Accepted : 2011.02.24
  • Published : 2011.03.30

Abstract

In this paper, we propose a scene adaptive method to obtain two LDR images with proper shutter speeds which capture the irradiance of scene effectively. The proposed method adaptively selects two shutter speeds across the video frame even when the illumination varies continuously. For the performance evaluation, we compute the PNSR to the ground truth which is obtained by the state-of-the-art HDR imaging method. It shows that the proposed method is able to select approximately optimal shutter speeds while avoiding the exhaustive search of every possible pair of shutter speeds.

본 논문에서는 장면의 밝기에 적합한 셔터 속도를 가진 두 장의 LDR (low dynamic range) 영상을 취득하여 HDR (high dynamic range) 영상을 고속으로 생성하는 효율적인 기법을 제안한다. 즉, 장면의 밝기에 최적인 HDR 영상을 취득하기 위해 본 논문에서는 오직 두 장의 초기 입력 LDR 영상을 이용하여 장면의 밝기에 대한 노출 곡선을 초기 추정한 후, 장면의 밝기 변화에 따른 최적의 셔터 속도를 시간 변화에 따라 지속적으로 추정하는 기법을 제안한다. 성능 평가를 위해 기존의 고화질 HDR 기법으로 생성한 영상과 제안된 방법으로 취득된 영상간의 유사도를 PSNR (peak signal to noise ratio)로 비교하였으며, 모든 두 장의 조합을 탐색하지 않고도 최적에 근사하는 두 개의 셔터 속도를 얻을 수 있음을 보인다.

Keywords

References

  1. M. D. Grossberg and S. K. Nayar, "What is the space of camera response function?," Proc. IEEE Conference on Computer Vision and Pattern Recognition, pp. 602-609, June 2003. https://doi.org/10.1109/CVPR.2003.1211522
  2. J. Takamatsu, "Estimating camera response functions using probabilistic intensity similarity," Proc. IEEE Conference on Computer Vision and Pattern Recognition, pp. 1-8, June 2008. https://doi.org/10.1109/CVPR.2008.4587655
  3. P. Debevec and J. Malik, "Recovering high dynamic range radiance maps from potographs," Proc. ACM SIGGRAPH, pp. 369-378, August 1997.
  4. M. A. Robertson, S. Borman, and L. Stevenson, "Dynamic range improvement through multiple exposures," Proc. IEEE International Conference on Image Processing, pp. 159-163, October 1999. https://doi.org/10.1109/ICIP.1999.817091
  5. T. Mitsunaga and S. K. Nayar, "Radiometric self calibration," Proc. IEEE Conference on Computer Vision and Pattern Recognition, pp. 1374-1380, June 1999. https://doi.org/10.1109/CVPR.1999.786966
  6. S. Mann and R. W. Picard, "Being 'undigital' with digital cameras : Extending dynamic range by combining differently exposed pictures," Proc. Instructional Systems Technology annual Conference, pp. 422-428, May 1995.
  7. L. Meylan and S. Susstrunk, "High dynamic range image with a Retinex-based adaptive filter," IEEE Trans. on Image Processing, vol. 15, no. 9, pp, 2820-2830, September 2006. https://doi.org/10.1109/TIP.2006.877312
  8. 박대근, 박기현, 하영호, "다중 노출 복수 영상에서 장면의 다이내믹레인지 추정을 통한 HDR 영상획득," 전자공학회논문지-SP, vol. 45, no. 2, pp. 10-20, 2008년3월.
  9. N. Barakat, A. N. Hone, and T. E. Darcie, "Minimal-bracketing sets for high-dynamic-range image capture," IEEE Trans. on Image Processing, vol. 17, no. 10, pp, 1864-1875, October 2008. https://doi.org/10.1109/TIP.2008.2001414
  10. K. Hirakawa and P. J. Wolfe, "Optimal exposure control for high dynamic range imaging," Proc. IEEE International Conference on Image Processing, pp. 3137-3140, September 2010. https://doi.org/10.1109/ICIP.2010.5654059
  11. E. Reinhard and K. Devlin, "Dynamic range reduction inspired by photoreceptor physiology," IEEE Trans. on Visualization and Computer Graphics, vol. 11, no. 1, pp. 12-24, January/February 2005. https://doi.org/10.1109/TVCG.2005.9