DOI QR코드

DOI QR Code

고분자수용액상에서의 스클레로글루칸의 레올로지 특성

Rheological Characterization of Aqueous Scleroglucan Systems for Cosmetics

  • 김도훈 (아모레퍼시픽기술연구원) ;
  • 임형준 (한양대학교 화학공학과) ;
  • 오성근 (한양대학교 화학공학과)
  • 투고 : 2011.03.02
  • 심사 : 2011.03.16
  • 발행 : 2011.03.31

초록

본 연구에서는 수용액상에서 스클레로글루칸의 레올로지 성질을 0.1 ~ 2 wt.%의 농도에서 레오미터와 점도계를 이용하여 측정하였다. 스클레로글루칸 겔은 다양한 염과 pH에서 강한 점증력을 보이며, 식물성 스쿠알란을 함유한 고분자 분산계에서 스클레로글루칸은 강한 오일 분산성질을 보인다. 또한 스클레로글루칸과 로커스트빈검 혼합물의 시너지효과를 관찰하였으며, 스클레로글루칸과 로커스트빈검의 혼합비율이 5 : 5일 때 가장 높은 점증 효과를 나타냈다.이들 연구결과는 다양한 화장품 제형을 위한 점증제로써 스클레로글루칸의 가능성을 보여줄 것이다

The rheological properties of the aqueous solution of scleroglucan industrially produced by Sclerotium rolfsii at concentrations ranging from 0.1 % to 2 % (w/w) were determined by using brookfield viscometer and rheometer. Gel matrices of scleroglucans were stable over a wide range of pH and ionic strength in the aqueous medium. In the oil dispersion with phytosqualane in oil phase and three kinds of thickening agent in aqueous phase, scleroglucan showed the highest dispersion properties. The synergistic effect between scleroglucan and locust bean gum was also examined. The highest viscosity was obtained for the solution mixture at scleroglucan/locust bean gum weight ratio of 5 : 5. The results of this study suggest the potential of scleroglucan as thickner for a wide variety of cosmetic formulations.

키워드

참고문헌

  1. R. Lapasin and S. Pricl, Reology of industrial polysaccharides: Theory and applications, Blackie Academic & Professional, Glagow (1995).
  2. E. R. Morris, M. G. E. Gothard, M. W. N. Hember, C. E. Manning, and G. Robinson, Conformational and rheological transitions of welan, rhamsan and acylated gella, Carbohydr. Polym., 30, 165 (1996). https://doi.org/10.1016/S0144-8617(96)00059-8
  3. R. L. Whister and J. N. BeMiller, Industrial gums: Polysaccharides and their derivatives, third ed., Academic Press, San Diego, (1993).
  4. S. Manca, R. Lapasin, P. Partal, and C. Gallegos, Influence of surfactant addition on the rheological properties of aqueous welan matrices, Rheol. Acta, 40, 128 (2001). https://doi.org/10.1007/s003970000138
  5. W. G. Griffin, H. F. Mark, D. F. Othmer, C. G. Overberger, and G. T Seaborg, Kirk-Othmer encyclopedia of chemical technology, 8, Wiley, New York, (1979).
  6. J. Higiro, T. J. Herald, and S. Alavi, Rheological study of xantham and locust bean gum interaction in dilute solution, Food Res. Int., 39, 165 (2006). https://doi.org/10.1016/j.foodres.2005.07.011
  7. C. Schorsh, C. Garnier, and J. L. Doblier, Viscoelastic properties of xanthan/galactomannan mixtures: Comparison of guar gum with locust been gum, Carbohydr. Polym., 34, 165 (1997). https://doi.org/10.1016/S0144-8617(97)00095-7
  8. J. A. Casas and F. Garcia-Ochoa, Viscosity of solutions of xanthan/locust bean gum mixtures, J Sci. Food. Agric, 79, 25 (1999). https://doi.org/10.1002/(SICI)1097-0010(199901)79:1<25::AID-JSFA164>3.0.CO;2-D
  9. M. Tako, Binding sites for mannose-specific interaction between xanthan and galactomannan, and glucomannan, Colloid surf B: Biointerfaces, 1, 125 (1993). https://doi.org/10.1016/0927-7765(93)80043-X