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Abstract. Using the notion of weighted sharing of values we study the uniqueness of

meromorphic functions when certain non-linear differential polynomials share the same

1-points. Though the main concern of the paper is to improve a result of Fang [5] but

as a consequence of the main result we improve and supplement some former results of

Lahiri-Sarkar [16], Fang-Fang[6] et. al.

1. Introduction definitions and results

Let f and g be two non-constant meromorphic functions defined in the open
complex plane C. If for some a ∈ C ∪ {∞}, f − a and g − a have the same set
of zeros with the same multiplicities, we say that f and g share the value a CM
(counting multiplicities), and if we do not consider the multiplicities then f and g
are said to share the value a IM (ignoring multiplicities).

We shall use the standard notations of value distribution theory:

T (r, f), m(r, f), N(r,∞; f), N(r,∞; f), . . .

(see [8]). We denote by T (r) the maximum of T (r, f) and T (r, g). The notation S(r)
denotes any quantity satisfying S(r) = o(T (r)) as r −→ ∞, outside of a possible
exceptional set of finite linear measure. For any constant a, we define

Θ(a; f) = 1− lim sup
r−→∞

N(r, a; f)

T (r, f)
.

In 1999 Lahiri [9] asked the following question.
What can be said if two nonlinear differential polynomials generated by two

meromorphic functions share 1 CM?
During the last couple of years a substantial amount of investigations have

been carried out by several authors on the uniqueness of meromorphic functions
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concerning non-linear differential polynomials and naturally several elegant results
have been obtained in this aspect (see [2]-[7], [13]-[20]).

In 2001 Fang and Hong [7] proved the following result.

Theorem A. Let f and g be two transcendental entire functions and n(≥ 11) be
an integer. If fn(f − 1)f

′
and gn(g − 1)g

′
share 1 CM, then f ≡ g.

Also in 2002 Fang and Fang [6] improved and supplemented the above theorem
by proving the following theorems.

Theorem B. Let f and g be two non-constant entire functions and n(≥ 8) be an
integer . If fn(f − 1)f

′
and gn(g − 1)g

′
share 1 CM, then f ≡ g.

Theorem C. Let f and g be two non-constant entire functions and n(≥ 17) be an
integer . If fn(f − 1)f

′
and gn(g − 1)g

′
share 1 IM, then f ≡ g.

In 2004 Lin and Yi [19] further improved Theorem B as follows.

Theorem D. Let f and g be two transcendental entire functions and n(≥ 7) be an
integer. If fn(f − 1)f

′
and gn(g − 1)g

′
share 1 CM, then f ≡ g.

In the same year Qiu and Fang [20] independently proved Theorem D resorting
to a new technique than that was adopted in [19] and replace the value 1-by a non
zero finite constant a.

The following example shows that the above theorems are not valid when f and
g are two meromorphic functions.

Example 1.1.

f(z) =
(n+ 2)

(n+ 1)

ez + . . .+ e(n+1)z

1 + ez + . . .+ e(n+1)z

and

g(z) =
(n+ 2)

(n+ 1)

1 + ez + . . .+ enz

1 + ez + . . .+ e(n+1)z

Clearly f(z) = ezg(z). Also fn(f − 1)f
′
and gn(g − 1)g

′
share 1 CM but f ̸≡ g.

We note that in the above example Θ(∞; f) = Θ(∞; g) = 0.
So to replace entire functions by meromorphic functions in the above mentioned

theorems definitely some extra conditions are required.
For meromorphic function Lin and Yi [19] proved the following result.

Theorem E. Let f and g be two non-constant meromorphic functions such that
Θ(∞; f) > 2

n+1 and n(≥ 11) be an integer. If fn(f − 1)f
′
and gn(g − 1)g

′
, share

the value 1-CM, then f ≡ g.

To state the next results we require the following definition known as weighted
sharing of values which measure how close a shared value is to be shared IM or to
be shared CM.
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Definition 1.1([10, 11]). Let k be a nonnegative integer or infinity. For a ∈ C∪{∞}
we denote by Ek(a; f) the set of all a-points of f , where an a-point of multiplicity
m is counted m times if m ≤ k and k + 1 times if m > k. If Ek(a; f) = Ek(a; g),
we say that f, g share the value a with weight k.

The definition implies that if f , g share a value a with weight k then z0 is an
a-point of f with multiplicity m (≤ k) if and only if it is an a-point of g with
multiplicity m (≤ k) and z0 is an a-point of f with multiplicity m (> k) if and only
if it is an a-point of g with multiplicity n (> k), where m is not necessarily equal
to n.

We write f , g share (a, k) to mean that f , g share the value a with weight k.
Clearly if f , g share (a, k), then f , g share (a, p) for any integer p, 0 ≤ p < k. Also
we note that f , g share a value a IM or CM if and only if f , g share (a, 0) or (a,∞)
respectively.

With the notion of weighted sharing of values Lahiri and Sarkar [16] proved the
following theorem for the uniqueness of non-linear differential polynomials which is
also an improvement of Theorem E.

Theorem F. Let f and g be two non-constant meromorphic functions such that
Θ(∞; f)+Θ(∞; g) > 4

n+1 and n(≥ 11) be an integer . If fn(f−1)f
′
and gn(g−1)g

′

share (1, 2), then f ≡ g.

Lahiri and Sarkar [16] also gave the following example to show that the condition
Θ(∞; f) + Θ(∞; g) > 4

n+1 is sharp in Theorem F.

Example 1.2. Let f = (n+2)(1−hn+1)
(n+1)(1−hn+2) , g = h (n+2)(1−hn+1)

(n+1)(1−hn+2) and h = α2(ez−1)
ez−α where

α = exp( 2πi
n+2 ) and n is a positive integer.

Clearly T (r, f) = (n + 1)T (r, h) + O(1) and T (r, g) = (n + 1)T (r, h) + O(1).
Further we see that h ̸= α, α2 and a root of h = 1 is not a pole of f and g.
Hence Θ(∞; f) = Θ(∞; g) = 2

n+1 . Also fn+1( f
n+1 − 1

n+1 ) ≡ gn+1( g
n+1 − 1

n+1 ) and

fn(f − 1)f
′ ≡ gn(g − 1)g

′
but f ̸≡ g.

In 2002 Fang [5] first considered the uniqueness of entire functions corresponding
to more generalized non-linear differential polynomials and proved the following
result.

Theorem G. Let f and g be two non-constant entire functions and let n, k be two
positive integers with n ≥ 2k + 8. If [fn(f − 1)](k) and [gn(g − 1)](k) share 1 CM,
then f ≡ g.

In the paper we will prove two theorems the second of which will not only
improve Theorem G by reducing the lower bound of n and at the same time relaxing
the nature of sharing the value 1 but also improve and supplement Theorem C. Our
first theorem will improve and supplement Theorem F. Following theorems are the
main results of the paper.
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Theorem 1.1. Let f and g be two transcendental meromorphic functions and
n(≥ 1), k(≥ 1), l(≥ 0) be three integers such that Θ(∞; f)+Θ(∞; g) > 4

n . Suppose

for two non zero constants a and b [fn(af + b)](k) and [gn(ag + b)](k) share (1, l).
If l ≥ 2 and n ≥ 3k + 9 or if l = 1 and n ≥ 4k + 10 or if l = 0 and n ≥ 9k + 18,
then f ≡ g or [fn(af + b)](k)[gn(ag + b)](k) ≡ 1. When k = 1 the possibility
[fn(af + b)](k)[gn(ag + b)](k) ≡ 1 does not occur.

Putting n = m + 1, a = 1
m+2 b = − 1

m+1 and k = 1 in the above theorem we
can immediately deduce the following corollary.

Corollary 1.1. Let f and g be two non-constant meromorphic functions and m(≥
1), l(≥ 0) be two integers such that Θ(∞; f) + Θ(∞; g) > 4

m+1 . Suppose for two

non zero constants a and b fm(f − 1)f
′
and gm(g − 1)g

′
share (1, l). If l ≥ 2 and

m ≥ 11 or if l = 1 and m ≥ 13 or if l = 0 and m ≥ 26, then f ≡ g.

Remark 1.1. Since Theorem F can be obtained as a special case of Theorem 1.1,
clearly Theorem 1.1 improves and supplements Theorem F.

Theorem 1.2. Let f and g be two non-constant entire functions and n(≥ 1),
k(≥ 1), l(≥ 0) be three integers. Suppose for two non zero constants a and b
[fn(af + b)](k) and [gn(ag + b)](k) share (1, l). If l ≥ 2 and n ≥ 2k + 6 or if l = 1
and n ≥ 5k

2 + 7 or if l = 0 and n ≥ 5k + 12, then f ≡ g.

Putting n = m + 1, a = 1
m+2 b = − 1

m+1 and k = 1 in the above theorem we
can immediately deduce the following corollary.

Corollary 1.2. Let f and g be two non-constant entire functions and m(≥ 1),
l(≥ 0) be two integers. Suppose for two non zero constants a and b fm(f − 1)f

′

and gm(g − 1)g
′
share (1, l). If l ≥ 2 and m ≥ 7 or if l = 1 and m ≥ 9 or if l = 0

and m ≥ 16, then f ≡ g.

Remark 1.2. Clearly Corollary 1.2 improve and supplement Theorem C.

Though we use the standard notations and definitions of the value distribution
theory available in [8], we explain some definitions and notations which are used in
the paper.

Definition 1.2([16]). Let p be a positive integer and a ∈ C ∪ {∞}.

(i) N(r, a; f |≥ p) (N(r, a; f |≥ p))denotes the counting function (reduced count-
ing function) of those a-points of f whose multiplicities are not less than p.

(ii) N(r, a; f |≤ p) (N(r, a; f |≤ p))denotes the counting function (reduced count-
ing function) of those a-points of f whose multiplicities are not greater than
p.

Definition 1.3(11, cf.[22]). For a ∈ C ∪ {∞} and a positive integer p we denote
by Np(r, a; f) the sum N(r, a; f) + N(r, a; f |≥ 2) + . . . N(r, a; f |≥ p). Clearly
N1(r, a; f) = N(r, a; f).
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Definition 1.4. Let a, b ∈ C ∪ {∞}. Let p be a positive integer. We denote by
N(r, a; f | ≥ p | g = b) (N(r, a; f | ≥ p | g ̸= b)) the reduced counting function of
those a-points of f with multiplicities ≥ p, which are the b-points (not the b-points)
of g.

Definition 1.5(cf.[1], 2). Let f and g be two non-constant meromorphic functions
such that f and g share the value 1 IM. Let z0 be a 1-point of f with multiplic-
ity p, a 1-point of g with multiplicity q. We denote by NL(r, 1; f) the counting

function of those 1-points of f and g where p > q, by N
1)
E (r, 1; f) the counting

function of those 1-points of f and g where p = q = 1 and by N
(2

E (r, 1; f) the
counting function of those 1-points of f and g where p = q ≥ 2, each point in
these counting functions is counted only once. In the same way we can define

NL(r, 1; g), N
1)
E (r, 1; g), N

(2

E (r, 1; g).

Definition 1.6(cf.[1], 2). Let k be a positive integer. Let f and g be two non-
constant meromorphic functions such that f and g share the value 1 IM. Let z0 be
a 1-point of f with multiplicity p, a 1-point of g with multiplicity q. We denote by
Nf>k (r, 1; g) the reduced counting function of those 1-points of f and g such that
p > q = k. Ng>k (r, 1; f) is defined analogously.

Definition 1.7([10, 11]). Let f , g share a value a IM. We denote by N∗(r, a; f, g)
the reduced counting function of those a-points of f whose multiplicities differ from
the multiplicities of the corresponding a-points of g.

ClearlyN∗(r, a; f, g) ≡ N∗(r, a; g, f) andN∗(r, a; f, g) = NL(r, a; f)+NL(r, a; g).

2. Lemmas

In this section we present some lemmas which will be needed in the sequel. Let
F , G be two non-constant meromorphic functions. Henceforth we shall denote by
H the following function.

(2.1) H =

(
F (k+2)

F (k+1)
− 2F (k+1)

F (k) − 1

)
−
(

G(k+2)

G(k+1)
− 2G(k+1)

G(k) − 1

)
.

Lemma 2.1([8]). Let f be a non-constant meromorphic function, k a positive
integer and let c be a non-zero finite complex number. Then

T (r, f) ≤ N(r,∞; f) +N(r, 0; f) +N
(
r, c; f (k)

)
−N

(
r, 0; f (k+1)

)
+ S(r, f)

≤ N(r,∞; f) +Nk+1(r, 0; f) +N
(
r, c; f (k)

)
−N0

(
r, 0; f (k+1)

)
+ S(r, f),

where N0

(
r, 0; f (k+1)

)
is the counting function of the zeros of f (k+1) which are not

the zeros of f(f (k) − c).
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Following lemma was proved in [15] for p = 2 and the general form is stated in
[23].

Lemma 2.2([23]) Let f be a non-constant meromorphic function and p, k be
positive integers, then

Np(r, 0; f
(k)) ≤ Np+k(r, 0; f) + kN(r,∞; f) + S(r, f).

Lemma 2.3([1]). If f, g be two non-constant meromorphic functions such that they
share (1, 1). Then

2NL(r, 1; f) + 2NL(r, 1; g) +N
(2

E (r, 1; f)−Nf>2(r, 1; g)

≤ N(r, 1; g)−N(r, 1; g).

Lemma 2.4([2]). Let f , g share (1, 1). Then

Nf>2(r, 1; g) ≤
1

2
N(r, 0; f) +

1

2
N(r,∞; f)− 1

2
N⊘(r, 0; f

′
) + S(r, f),

where N⊘(r, 0; f
′
) is the counting function of those zeros of f

′
which are not the

zeros of f(f − 1).

Lemma 2.5([2]). Let f and g be two non-constant meromorphic functions sharing
(1, 0). Then

NL(r, 1; f) + 2NL(r, 1; g) +N
(2

E (r, 1; f)−Nf>1(r, 1; g)−Ng>1(r, 1; f)

≤ N(r, 1; g)−N(r, 1; g).

Lemma 2.6([2]). Let f , g share (1, 0). Then

NL(r, 1; f) ≤ N(r, 0; f) +N(r,∞; f) + S(r, f)

Lemma 2.7([2]). Let f , g share (1, 0). Then

(i) Nf>1(r, 1; g) ≤ N(r, 0; f) +N(r,∞; f)−N⊘(r, 0; f
′
) + S(r, f)

(ii) Ng>1(r, 1; f) ≤ N(r, 0; g) +N(r,∞; g)−N⊘(r, 0; g
′
) + S(r, g).

Lemma 2.8([21]). Let f be a non-constant meromorphic function and P (f) =
a0 + a1f + a2f

2 + . . . + anf
n, where a0, a1, a2 . . . , an are constants and an ̸= 0.

Then T (r, P (f)) = nT (r, f) +O(1).
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Lemma 2.9. Let f and g be two non-constant meromorphic functions. Then

fn−1 [a(n+ 1)f + nb] f
′
gn−1 [a(n+ 1)g + nb] g

′
̸≡ 1,

where n ≥ 12 is an integer.

Proof. We omit the proof as it can be proved in the line of proof Lemma 2.7 in
[17]. 2

Lemma 2.10. Let f and g be two non-constant entire functions. Then

[fn(af + b)](k)[gn(ag + b)](k) ̸≡ 1,

where a and b are nonzero complex numbers; n, k be two positive integers and
n(> k).

Proof. We omit the proof since the proof can be found in the proof of Theorem 2
in [5]. 2

Lemma 2.11. Let f and g be two non-constant meromorphic functions such that

Θ(∞; f) + Θ(∞; g) >
4

n
,

where n(≥ 3) is an integer. Then

fn(af + b) ≡ gn(ag + b)

implies f ≡ g, where a, b are non-zero constants.

Proof. We omit the proof since it can be carried out in the line of Lemma 6 in
[12]. 2

3. Proofs of the theorems

Proof of Theorem 1.1. Let F = fn(af + b) and G = gn(ag+ b). It follows that F (k)

and G(k) share (1, l).
Case 1 Let H ̸≡ 0.
Subcase 1.1 l ≥ 1
From (2.1) we get

N(r,∞;H) ≤ N(r,∞;F ) +N(r,∞;G) +N∗

(
r, 1;F (k), G(k)

)
(3.1)

+N
(
r, 0;F (k) |≥ 2

)
+N

(
r, 0;G(k) |≥ 2

)
+N⊗

(
r, 0;F (k+1)

)
+N⊗

(
r, 0;G(k+1)

)
,

where N⊗
(
r, 0;F (k+1)

)
is the reduced counting function of those zeros of F (k+1)

which are not the zeros of F (k)
(
F (k) − 1

)
and N⊗

(
r, 0;G(k+1)

)
is similarly defined.
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Let z0 be a simple zero of F (k) − 1. Then z0 is a simple zero of G(k) − 1 and a
zero of H. So

(3.2) N
(
r, 1;F (k) |= 1

)
≤ N(r, 0;H) ≤ N(r,∞;H) + S(r, F ) + S(r,G)

While l ≥ 2, using (3.1) and (3.2) we get

N
(
r, 1;F (k)

)
(3.3)

≤ N
(
r, 1;F (k) |= 1

)
+N

(
r, 1;F (k) |≥ 2

)
≤ N(r,∞;F ) +N(r,∞;G) +N(r.0;F (k) |≥ 2) +N

(
r.0;G(k) |≥ 2

)
+N∗

(
r, 1;F (k), G(k)

)
+N

(
r, 1;F (k) |≥ 2

)
+N⊗(r, 0;F

(k+1))

+N⊗

(
r, 0;G(k+1)

)
+ S(r, F ) + S(r,G).

So from Lemmas 2.1 and 2.8 we have

T (r, F ) + T (r,G)(3.4)

≤ 2N(r,∞;F ) + 2N(r,∞;G) +Nk+1(r, 0;F ) +Nk+1(r, 0;G)

+N
(
r, 0;F (k) |≥ 2

)
+N

(
r, 0;G(k) |≥ 2

)
+N⊗

(
r, 0;F (k+1)

)
+N⊗

(
r, 0;G(k+1)

)
+N

(
r, 1;G(k)

)
+N

(
r, 1;F (k) |≥ 2

)
+N∗

(
r, 1;F (k), G(k)

)
−N0

(
r, 0;F (k+1)

)
−N0

(
r, 0;G(k+1)

)
.

+S(r, F ) + S(r,G)

We note that

Nk+1(r, 0;F ) +N
(
r, 0;F (k) |≥ 2

)
+N⊗

(
r, 0;F (k+1)

)
(3.5)

≤ Nk+1(r, 0;F ) +N
(
r, 0;F (k) |≥ 2 | F = 0

)
+N

(
r, 0;F (k) |≥ 2 | F ̸= 0

)
+N⊗

(
r, 0;F (k+1)

)
≤ Nk+1(r, 0;F ) +N (r, 0;F |≥ k + 2) +N0

(
r, 0;F (k+1)

)
≤ Nk+2(r, 0;F ) +N0

(
r, 0;F (k+1)

)
.
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Clearly similar expression holds for G. Also

N
(
r, 1;F (k) |≥ 2

)
+N∗

(
r, 1;F (k), G(k)

)
+N

(
r, 1;G(k)

)
(3.6)

≤ N
(
r, 1;G(k) |= 2

)
+ 2NL

(
r, 1;F (k)

)
+ 2NL

(
r, 1;G(k)

)
+N

(3

E

(
r, 1;G(k)

)
+N

(
r, 1;G(k)

)
≤ N

(
r, 1;G(k)

)
≤ T

(
r,G(k)

)
+O(1)

≤ T (r,G) + kN(r,∞;G) + S(r,G).

Using Lemma 2.8, (3.5) and (3.6) in (3.4) we obtain for ε > 0

(n+ 1)T (r, f)(3.7)

= T (r, F ) +O(1)

≤ Nk+2(r, 0;F ) +Nk+2(r, 0;G) + 2N(r,∞;F )

+(k + 2)N(r,∞;G) + S(r, F ) + S(r,G)

≤ Nk+2 (r, 0; f
n) +Nk+2(r, 0; af + b) +Nk+2 (r, 0; g

n)

+Nk+2(r, 0; ag + b) + 2N(r,∞; f) + (k + 2)N(r,∞; g)

+S(r, f) + S(r, g)

≤ (5 + k − 2Θ(∞; f) + ε)T (r, f) + (5 + 2k − (2 + k)Θ(∞; g)

+ε)T (r, g) + S(r, f) + S(r, g)

≤ (10 + 3k − 2Θ(∞; f)− 2Θ(∞; g)− kmin{Θ(∞; f),Θ(∞; g)}
+2ε)T (r) + S(r, f) + S(r, g).

In a similar way we can obtain

(n+ 1)T (r, g)(3.8)

≤ (10 + 3k − 2Θ(∞; f)− 2Θ(∞; g)− kmin{Θ(∞; f),Θ(∞; g)}
+2ε)T (r) + S(r, f) + S(r, g).

So from (3.7) and (3.8) we get

(n− 3k − 9 + 2Θ(∞; f) + 2Θ(∞; g) + kmin{Θ(∞; f),Θ(∞; g)} − 2ε)T (r)(3.9)

≤ S(r).

Since n ≥ 3k + 9, Θ(∞; f) + Θ(∞; g) > 4
n and ε > 0 be arbitrary, (3.9) gives a
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contradiction. While l = 1, using Lemmas 2.2, 2.3 and 2.4, (3.1) and (3.2) we get

N
(
r, 1;F (k)

)
+N

(
r, 1;G(k)

)
(3.10)

≤ N
(
r, 1;F (k) |= 1

)
+NL

(
r, 1;F (k)

)
+NL

(
r, 1;G(k)

)
+N

(2

E

(
r, 1;G(k)

)
+N

(
r, 1;G(k)

)
≤ N

(
r, 1;F (k) |= 1

)
+N

(
r, 1;G(k)

)
−NL

(
r, 1;F (k)

)
−NL

(
r, 1;G(k)

)
+NF (k)>2

(
r, 1;G(k)

)
≤ N(r,∞;F ) +N(r,∞;G) +N

(
r, 0;F (k) |≥ 2

)
+N

(
r, 0;G(k) |≥ 2

)
+N∗

(
r, 1;F (k), G(k)

)
−NL

(
r, 1;F (k)

)
−NL

(
r, 1;G(k)

)
+
1

2
N

(
r, 0;F (k)

)
+

1

2
N

(
r,∞;F (k)

)
+ T

(
r,G(k)

)
+N⊗

(
r, 0;F (k+1)

)
+N⊗

(
r, 0;G(k+1)

)
+ S(r, F ) + S(r,G)

≤
(
k

2
+

3

2

)
N(r,∞;F ) + (k + 1)N(r,∞;G) +N

(
r, 0;F (k) |≥ 2

)
+N

(
r, 0;G(k) |≥ 2

)
+

1

2
Nk+1(r, 0;F ) + T (r,G) +N⊗

(
r, 0;F (k+1)

)
+N⊗

(
r, 0;G(k+1)

)
+ S(r, F ) + S(r,G).

So in view of Lemmas 2.1, 2.8, (3.5) and (3.10) we get for ε > 0

(n+ 1)T (r, f)(3.11)

= T (r, F ) +O(1)

≤
(
k

2
+

5

2

)
N(r,∞;F ) + (k + 2)N(r,∞;G) +

1

2
Nk+1(r, 0;F )

+Nk+2(r, 0;F ) +Nk+2(r, 0;G) + S(r, F ) + S(r,G)

≤
(
2k +

13

2
− (

k

2
+ 2)Θ(∞; f)− 1

2
Θ(∞; f) + ε

)
T (r, f)

+

(
2k + 5− (

k

2
+ 2)Θ(∞; g)− k

2
Θ(∞; g) + ε

)
T (r, g)

+S(r, f) + S(r, g)

≤
(
4k +

23

2
− (

k

2
+

5

2
) (Θ(∞; f) + Θ(∞; g)) + 2ε

)
T (r)

+S(r).
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In a similar manner we can get

(n+ 1)T (r, g)

≤
(
4k +

23

2
− (

k

2
+

5

2
) (Θ(∞; f) + Θ(∞; g)) + 2ε

)
T (r) + S(r).

(3.12)

Combining (3.11) and (3.12) we get

(3.13)

(
n− 4k − 21

2
+ (

k

2
+

5

2
) (Θ(∞; f) + Θ(∞; g))− 2ε

)
T (r) ≤ S(r).

Since n ≥ 4k+ 10, Θ(∞; f) +Θ(∞; g) > 4
n and ε > 0 be arbitrary, (3.13) implies a

contradiction.
Subcase 1.2 l = 0. Here (3.2) changes to

(3.14) N
1)
E

(
r, 1;F (k) |= 1

)
≤ N(r, 0;H) ≤ N(r,∞;H) + S(r, F ) + S(r,G)

Using Lemmas 2.2, 2.5, 2.6, 2.7 and (3.1) and (3.14) we get

N
(
r, 1;F (k)

)
+N

(
r, 1;G(k)

)
(3.15)

≤ N
1)
E

(
r, 1;F (k)

)
+NL

(
r, 1;F (k)

)
+NL

(
r, 1;G(k)

)
+N

(2

E

(
r, 1;F (k)

)
+N

(
r, 1;G(k)

)
≤ N

1)
E

(
r, 1;F (k)

)
+N

(
r, 1;G(k)

)
−NL

(
r, 1;G(k)

)
+NF (k)>1

(
r, 1;G(k)

)
+NG(k)>1

(
r, 1;F (k)

)
≤ N(r,∞;F ) +N(r,∞;G) +N

(
r, 0;F (k) |≥ 2

)
+N

(
r, 0;G(k) |≥ 2

)
+N∗

(
r, 1;F (k), G(k)

)
+ T

(
r,G(k)

)
−NL

(
r, 1;G(k)

)
+NF (k)>1

(
r, 1;G(k)

)
+NG(k)>1

(
r, 1;F (k)

)
+N⊗

(
r, 0;F (k+1)

)
+N⊗

(
r, 0;G(k+1)

)
+ S(r, F ) + S(r,G)

≤ (2k + 3)N(r,∞;F ) + (2k + 2)N(r,∞;G) +N
(
r, 0;F (k) |≥ 2

)
+N

(
r, 0;G(k) |≥ 2

)
+ 2Nk+1(r, 0;F ) +Nk+1(r, 0;G) + T (r,G)

+N⊗

(
r, 0;F (k+1)

)
+N⊗

(
r, 0;G(k+1)

)
+ S(r, F ) + S(r,G).
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So in view of Lemmas 2.1, 2.8, (3.5) and (3.15) we get for ε > 0

(n+ 1)T (r, f)(3.16)

= T (r, F ) +O(1)

≤ (2k + 4)N(r,∞; f) + (2k + 3)N(r,∞; g) + 2Nk+1(r, 0;F )

+Nk+1(r, 0;G) +Nk+2(r, 0;F ) +Nk+2(r, 0;G) + S(r, f) + S(r, g)

≤ (9k + 19− (2k + 3)Θ(∞; f)− (2k + 3)Θ(∞; g)−min{Θ(∞; f),Θ(∞; g)}
+2ε)T (r) + S(r).

Similarly we can obtain

(n+ 1)T (r, g)(3.17)

= T (r,G) +O(1)

≤ (9k + 19− (2k + 3)Θ(∞; f)− (2k + 3)Θ(∞; g)−min{Θ(∞; f),Θ(∞; g)}
+2ε)T (r) + S(r).

Combining (3.16) and (3.17) we get

(n− 9k − 18 + (2k + 3)Θ(∞; f) + (2k + 3)Θ(∞; g)

+ min{Θ(∞; f),Θ(∞; g)} − 2ε)T (r)

≤ S(r).

(3.18)

Since n ≥ 9k+ 18, Θ(∞; f) +Θ(∞; g) > 4
n and ε > 0 be arbitrary, (3.18) implies a

contradiction.
Case 2 Next we suppose that H ≡ 0. Then by integration we get from (2.1)

(3.19)
1

F (k) − 1
≡ bG(k) + a− b

G(k) − 1
,

where a, b are constants and a ̸= 0. From (3.19) it is clear that F (k) and G(k) share
(1,∞) and hence they share (1, 2). So in this case always n ≥ 3k + 9. We now
consider the following subcases.
Subcase 2.1 Let b ̸= 0 and a ̸= b.
If b = −1, then from (3.19) we have

F (k) =
−a

G(k) − a− 1
.

Therefore
N

(
r, a+ 1;G(k)

)
= N

(
r,∞;F (k)

)
= N(r,∞; f).

Since a ̸= b = −1, from Lemma 2.1 we have

(n+ 1)T (r, g) = T (r,G) +O(1)

≤ N(r,∞;G) +Nk+1(r, 0;G) +N(r, a+ 1;G(k)) + S(r,G)

≤ N(r,∞; f) +N(r,∞; g) +Nk+1(r, 0;G) + S(r,G)

≤ T (r, f) + (k + 3)T (r, g) + S(r, g)
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Without loss of generality, we suppose that there exists a set I with infinite measure
such that T (r, f) ≤ T (r, g) for r ∈ I.
So for r ∈ I we have

(n− k − 3)T (r, g) ≤ S(r, g),

which is a contradiction for n ≥ 3k + 9.
If b ̸= −1, from (3.19) we obtain that

F (k) −
(
1 +

1

b

)
=

−a

b2[G(k) + (a− b)/b]
.

Therefore

N
(
r, (b− a)/b;G(k)

)
= N

(
r,∞;F (k) − (1 + 1/b)

)
= N(r,∞; f)

Using Lemma 2.1 and the same argument as used in the case when b = −1 we can
get a contradiction.
Subcase 2.2 Let b ̸= 0 and a = b.
If b = −1, then from (3.19) we have

F (k)G(k) ≡ 1,

that is
[fn(af + b)](k)[gn(ag + b)](k) ≡ 1,

which in view of Lemma 2.9 is impossible when k = 1.
If b ̸= −1, from (3.19) we have

1

F (k)
=

bG(k)

(1 + b)G(k) − 1
.

Hence from Lemma 2.2 we have

N
(
r, 1/(1 + b);G(k)

)
= N

(
r, 0;F (k)

)
≤ Nk+1(r, 0;F ) + kN(r,∞; f).

From Lemma 2.1 we have

(n+ 1)T (r, g) +O(1)

= T (r,G)

≤ N(r,∞;G) +Nk+1(r, 0;G) +N

(
r,

1

b+ 1
;G(k)

)
+ S(r,G)

≤ kN(r,∞; f) +N(r,∞; g) +Nk+1(r, 0;F ) +Nk+1(r, 0;G) + S(r,G)

≤ (2k + 2)T (r, f) + (k + 3)T (r, g) + S(r, g)
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For r ∈ I we have

(n− 3k − 4)T (r, g) ≤ S(r, g),

which is a contradiction for n ≥ 3k + 9.
Subcase 2.3 Let b = 0. From (3.19) we obtain

(3.20) F (k) =
G(k) + a− 1

a
.

If a− 1 ̸= 0 then From (3.20) we obtain

N
(
r, 1− a;G(k)

)
= N

(
r, 0;F (k)

)
.

We can similarly deduce a contradiction as in Subcase 2.2. Therefore a = 1 and
from (3.20) we obtain

(3.21) F = G+ p(z),

where p(z) is a polynomial of degree at most k − 1. We claim that p(z) ≡ 0.
Otherwise noting that f is transcendental when k ≥ 2, in view of Lemma 2.8 we
have

(n+ 1)T (r, f) = T (r, F ) +O(1)(3.22)

≤ N(r, 0;F ) +N(r,∞; f) +N(r, p;F ) + S(r, F )

≤ N(r, 0;F ) +N(r,∞; f) +N(r, 0;G) + S(r, F )

≤ 3T (r, f) + 2T (r, g) + S(r, f)

Also from (3.21) we get

T (r, f) = T (r, g) + S(r, f),

which together with (3.22) implies a contradiction. Hence (3.21) becomes

F ≡ G.

So from Lemma 2.11 we get f ≡ g. 2

Proof of Theorem 1.2. We omit the proof since instead of Lemma 2.9 using Lemma
2.10 and proceeding in the same way the proof of the theorem can be carried out
in the line of proof of Theorem 1.1. 2
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