DOI QR코드

DOI QR Code

Thermal Insulation Properties of Epoxy/Mesoporous Carbon Composites

  • Heo, Gun-Young (Department of Chemistry, Inha University) ;
  • Seo, Min-Kang (Jeonju Institute of Machinery and Carbon Composites) ;
  • Oh, Sang-Yeob (Jeonju Institute of Machinery and Carbon Composites) ;
  • Choi, Kyeong-Eun (Department of Practical Arts Education, Jeonju National University of Education) ;
  • Park, Soo-Jin (Department of Chemistry, Inha University)
  • Received : 2011.01.18
  • Accepted : 2011.03.12
  • Published : 2011.03.30

Abstract

This study aimed to investigate the influence of mesoporous carbons on the thermal insulation properties of epoxy/mesoporous carbon composites. The mesoporous carbon (CMK-3) was prepared by conventional templating method using SBA-15. The epoxy/mesoporous carbon composites were prepared by mixing the synthesized CMK-3 with diglycidylether of bisphenol A (DGEBA). As experimental results, the curing reactivities of the DGEBA/CMK-3 composites were found to decrease with the addition of the CMK-3. Also, the thermal conductivities of DGEBA/CMK-3 composites were found to decrease with increasing CMK-3 content. This could be interpreted in terms of the slow thermal diffusion rate resulting in pore volume existing in the gaps in the interfaces between the mesoporous carbon and the DGEBA matrix.

Keywords

References

  1. May CA. Epoxy Resins: Chemistry and Technology. 2nd ed., Marcel Dekker, New York (1988).
  2. Prolongo SG, Campo M, Gude MR, Chaos-Moran R, Urena A. Compos Sci Technol, 69, 349 (2009). https://doi.org/10.1016/j.compscitech.2008.10.018
  3. Heo GY, Park SJ. Macromol Res, 17, 870 (2009). https://doi.org/10.1007/BF03218628
  4. Canto CF, De A. Prado LAS, Radovanovic E, Yoshida IVP. Polym Eng Sci, 48, 141 (2008). https://doi.org/10.1002/pen.20931
  5. Seo MK, Choi KE, Park SH, Hong YT, Park SJ. Carbon Lett, 10, 329 (2009). https://doi.org/10.5714/CL.2009.10.4.329
  6. Fesmire JE, Sass JP. Cryogenics, 48, 223 (2008). https://doi.org/10.1016/j.cryogenics.2008.03.014
  7. Khoun L, Hubert P. Polym Compos, 31, 1603 (2010). https://doi.org/10.1002/pc.20949
  8. Sudo A, Isobe Y, Endo T. J Appl Polym Sci, 112, 836 (2009). https://doi.org/10.1002/app.29476
  9. Rosato DV, Di Mattia DP, Rosato DV. Designing with Plastics and Composites: A Handbook, Van Nostrand Reinhold, New York (1991).
  10. Lee ES, Lee SM, Shanefield DJ, Cannon WR. J Am Ceram Soc, 91, 1169 (2008). https://doi.org/10.1111/j.1551-2916.2008.02247.x
  11. Kim KS, Choi KE, Park SJ. Carbon Lett, 10, 335 (2009). https://doi.org/10.5714/CL.2009.10.4.335
  12. Kyotani T. Carbon, 38, 269 (2000). https://doi.org/10.1016/S0008-6223(99)00142-6
  13. Hou Y, Guo L, Wang G. J Electroanal Chem, 617, 211 (2008). https://doi.org/10.1016/j.jelechem.2008.02.011
  14. Baxter RI, Rawlings RD, Iwashita N, Sawada Y. Carbon, 38, 441 (2000). https://doi.org/10.1016/S0008-6223(99)00125-6
  15. Bo X, Bai J, Wang L, Guo L. Talanta, 81, 339 (2010). https://doi.org/10.1016/j.talanta.2009.12.007
  16. Tan S, Zou W, Jiang F, Tan S, Liu Y, Yuan D. Mater Lett, 64, 2163 (2010). https://doi.org/10.1016/j.matlet.2010.07.023
  17. Sakamoto Y, Kaneda M, Terasaki O, Zhao DY, Kim JM, Stucky G, Shin HJ, Ryoo R. Nature, 408, 449 (2000). https://doi.org/10.1038/35044040
  18. Waters DN, John LP. Anal Chem, 60, 53 (1988) https://doi.org/10.1021/ac00152a014
  19. Lin J, Wang X. Eur Polym J, 44, 1414 (2008). https://doi.org/10.1016/j.eurpolymj.2008.02.022
  20. Jin FL, Park SJ. Polym Degrad Stab, 92, 509 (2007). https://doi.org/10.1016/j.polymdegradstab.2006.04.007

Cited by

  1. A Study on Thermal Conductivity and Fracture Toughness of Alumina Nanofibers and Powders-filled Epoxy Matrix Composites vol.37, pp.1, 2013, https://doi.org/10.7317/pk.2013.37.1.47
  2. Investigation of Free-Standing Plasmonic Mesoporous Ag/CMK-8-Nafion Composite Membrane for the Removal of Organic Pollutants with 254-nm UV Irradiation vol.12, pp.1, 2017, https://doi.org/10.1186/s11671-017-2124-7