DOI QR코드

DOI QR Code

Improved Sensitivity of an NO Gas Sensor by Chemical Activation of Electrospun Carbon Fibers

  • Kang, Seok-Chang (Department of Fine Chemical Engineering and Applied Chemistry, BK21-E2M, Chungnam National University) ;
  • Im, Ji-Sun (Department of Fine Chemical Engineering and Applied Chemistry, BK21-E2M, Chungnam National University) ;
  • Lee, Young-Seak (Department of Fine Chemical Engineering and Applied Chemistry, BK21-E2M, Chungnam National University)
  • Received : 2011.01.27
  • Accepted : 2011.03.10
  • Published : 2011.03.30

Abstract

A novel electrode for an NO gas sensor was fabricated from electrospun polyacrylonitrile fibers by thermal treatment to obtain carbon fibers followed by chemical activation to enhance the activity of gas adsorption sites. The activation process improved the porous structure, increasing the specific surface area and allowing for efficient gas adsorption. The gas sensing ability and response time were improved by the increased surface area and micropore fraction. High performance gas sensing was then demonstrated by following a proposed mechanism based on the activation effects. Initially, the pore structure developed by activation significantly increased the amount of adsorbed gas, as shown by the high sensitivity of the gas sensor. Additionally, the increased micropore fraction enabled a rapid sensor response time due to improve the adsorption speed. Overall, the sensitivity for NO gas was improved approximately six-fold, and the response time was reduced by approximately 83% due to the effects of chemical activation.

Keywords

References

  1. Chen L, Tsang SC. Sensors Actuators B: Chem, 89, 68 (2003). https://doi.org/10.1016/S0925-4005(02)00430-6
  2. Sberveglieri G, Benussi P, Coccoli G, Groppelli S, Nelli P. Thin Solid Films, 186, 349 (1990). https://doi.org/10.1016/0040-6090(90)90150-C
  3. Ueda T, Bhuiyan MMH, Norimatsu H, Katsuki S, Ikegami T, Mitsugi F. Physica E, 40, 2272 (2008). https://doi.org/10.1016/j.physe.2007.12.006
  4. Korotcenkov G. Mater Sci Eng R: Rep, 61, 1 (2008). https://doi.org/10.1016/j.mser.2008.02.001
  5. Bondavalli P, Legagneux P, Pribat D. Sensors Actuators B: Chem, 140, 304 (2009). https://doi.org/10.1016/j.snb.2009.04.025
  6. Setkus A, Kaciulis S, Pandolfi L, Senuliene D, Strazdiene V. Sensors Actuators B: Chem, 111-112, 36 (2005). https://doi.org/10.1016/j.snb.2005.07.021
  7. Papadopoulos CA, Vlachos DS, Avaritsiotis JN. Sensors Actuators B: Chem, 32, 61 (1996). https://doi.org/10.1016/0925-4005(96)80110-9
  8. Lee SH, Im JS, Kang SC, Bae TS, In SJ, Jeong E, Lee YS. Chem Phys Lett, 497, 191 (2010). https://doi.org/10.1016/j.cplett.2010.08.002
  9. Lee YS, Kim YH, Hong JS, Suh JK, Cho GJ. Catal Today, 120, 420 (2007). https://doi.org/10.1016/j.cattod.2006.09.014
  10. Im JS, Park SJ, Kim TJ, Kim YH, Lee YS. J Colloid Interface Sci, 318, 42 (2008). https://doi.org/10.1016/j.jcis.2007.10.024
  11. Im JS, Park SJ, Lee YS. J Colloid Interface Sci, 314, 32 (2007). https://doi.org/10.1016/j.jcis.2007.05.033
  12. Im JS, Jang JS, Lee YS. J Ind Eng Chem, 15, 914 (2009). https://doi.org/10.1016/j.jiec.2009.09.024
  13. Im JS, Park SJ, Lee YS. Int J Hydrogen Energy, 34, 1423 (2009). https://doi.org/10.1016/j.ijhydene.2008.11.054
  14. Molina-Sabio M, Almansa C, Rodriguez-Reinoso F. Carbon, 41, 2113 (2003). https://doi.org/10.1016/S0008-6223(03)00237-9
  15. Im JS, Park SJ, Lee YS. Mater Res Bull, 44, 1871 (2009). https://doi.org/10.1016/j.materresbull.2009.05.010
  16. Basova YV, Edie DD, Lee YS, Reid LK, Ryu SK. Carbon, 42, 485 (2004). https://doi.org/10.1016/j.carbon.2003.12.070
  17. Im JS, Park SJ, Kim T, Lee YS. Int J Hydrogen Energy, 34, 3382 (2009). https://doi.org/10.1016/j.ijhydene.2009.02.047
  18. Penza M, Rossi R, Alvisi M, Cassano G, Signore MA, Serra E, Giorgi R. Sensors Actuators B: Chem, 135, 289 (2008). https://doi.org/10.1016/j.snb.2008.08.024
  19. Nguyen HQ, Huh JS. Sensors Actuators B: Chem, 117, 426 (2006). https://doi.org/10.1016/j.snb.2005.11.056
  20. Radhakrishnan S, Paul S. Sensors Actuators B: Chem, 125, 60 (2007). https://doi.org/10.1016/j.snb.2007.01.038
  21. Kauffman DR, Star A. Angew Chem Int Ed, 47, 6550 (2008). https://doi.org/10.1002/anie.200704488
  22. Han KR, Kim CS, Kang KT, Koo HJ, Kang DI, Jingwen H. Sensors Actuators B: Chem, 81, 182 (2002). https://doi.org/10.1016/S0925-4005(01)00950-9
  23. Moon J, Park JA, Lee SJ, Zyung T, Kim ID. Sensors Actuators B: Chem, 149, 301 (2010). https://doi.org/10.1016/j.snb.2010.06.033
  24. Cho WS, Moon SI, Paek KK, Lee YH, Park JH, Ju BK. Sensors Actuators B: Chem, 119, 180 (2006). https://doi.org/10.1016/j.snb.2005.12.004
  25. Chiu HS, Lin PI, Wu HC, Hsieh WH, Chen CD, Chen YT. Carbon, 47, 1761 (2009). https://doi.org/10.1016/j.carbon.2009.03.002
  26. Im JS, Kang SC, Lee SH, Lee YS. Carbon, 48, 2573 (2010). https://doi.org/10.1016/j.carbon.2010.03.045
  27. Kobayashi N, Enoki T, Ishii C, Kaneko K, Endo M. J Chem Phys, 109, 1983 (1998). https://doi.org/10.1063/1.476774

Cited by

  1. A review of elemental mercury removal processing vol.12, pp.3, 2011, https://doi.org/10.5714/CL.2011.12.3.121
  2. Fabrication and Characterization of Porous Non-Woven Carbon Based Highly Sensitive Gas Sensors Derived by Magnesium Oxide vol.13, pp.4, 2012, https://doi.org/10.5714/CL.2012.13.4.254
  3. Effects of improved porosity and electrical conductivity on pitch-based carbon nanofibers for high-performance gas sensors vol.19, pp.6, 2012, https://doi.org/10.1007/s10934-011-9559-5
  4. A hybrid gas-sensing material based on porous carbon fibers and a TiO2 photocatalyst vol.48, pp.23, 2013, https://doi.org/10.1007/s10853-013-7645-6
  5. NO gas sensing ability of activated carbon fibers modified by an electron beam for improvement in the surface functional group vol.20, 2016, https://doi.org/10.5714/CL.2016.20.019