DOI QR코드

DOI QR Code

Equilibrium Removal of Pb (II) Ions from Aqueous Solution onto Oxidized-KOH-Activated Carbons

  • Fathy, Nady A. (Surface Chemistry and Catalysis Laboratory, National Research Centre) ;
  • El-Sherif, Iman Y. (Water Pollution Department, National Research Centre)
  • Received : 2011.02.14
  • Accepted : 2011.03.15
  • Published : 2011.03.30

Abstract

In the present study, the removal of Pb (II) ions on oxidized activated carbons (ACs) was investigated. ACs were derived from activation of indigenous cotton stalks waste with potassium hydroxide (KOH) in two-stage process. The KOH-ACs were subjected to liquid-phase oxidation with hot $HNO_3$ and one untreated sample was included for comparison. The obtained carbons were characterized by Fourier transform infrared (FTIR), slurry pH and $N_2$-adsorption at 77 K, respectively. Adsorption capacity of Pb (II) ions on the resultant carbons was determined by batch equilibrium experiments. The experimental results indicated that the oxidation with nitric acid was associated with a significant increase in mass of yield as well as a remarkable reduction in internal porosity as compared to the untreated carbon. The AC-800N revealed higher adsorption capacity than that of AC-800, although the former sample exhibited low surface area and micropore volume. It was observed that the adsorption capacity enhancement attributed to pore widening, the generation of oxygen functional groups and potassium containing compounds leading to cation-exchange on the carbon surface. These results show that the oxidized carbons represented prospective adsorbents for enhancing the removal of heavy metals from wastewater.

Keywords

References

  1. Reddad Z, Gerente C, Andres Y, Le Cloirec P. Environ Sci Technol, 36, 2067 (2002). https://doi.org/10.1021/es0102989
  2. El-Sherif IY, Shouman MA, Girgis BS. J Environmental Sci, 33, 199 (2007).
  3. Ma QY, Logan TJ, Traina SJ. Environ Sci Technol, 29, 1118 (1995). https://doi.org/10.1021/es00004a034
  4. Bhattacharjee S, Chakrabarty S, Maity S, Kar S, Thakur P, Bhattacharyya G. Water Res, 37, 3954 (2003). https://doi.org/10.1016/S0043-1354(03)00315-4
  5. Balaria A, Schiewer S. Sep Purif Technol, 63, 577 (2008). https://doi.org/10.1016/j.seppur.2008.06.023
  6. Li K, Zheng Z, Li Y. J Hazard Mater, 181, 440 (2010). https://doi.org/10.1016/j.jhazmat.2010.05.030
  7. El-Shafey EI, Cox M, Pichugin AA, Appleton Q. J Chem Technol Biotechnol, 77, 429 (2002). https://doi.org/10.1002/jctb.577
  8. Faust SD, Aly OM. Chemistry of Water Treatment, Butterworth, Boston (1983).
  9. Girgis BS, Elkady AA, Attia AA, Fathy NA, Wahhab A. Carbon Lett, 10, 114 (2009). https://doi.org/10.5714/CL.2009.10.2.114
  10. Park SJ, Jang YS. J Colloid Interface Sci, 249, 458 (2002). https://doi.org/10.1006/jcis.2002.8269
  11. Monser L, Adhoum N. Sep Purif Technol, 26, 137 (2002). https://doi.org/10.1016/S1383-5866(01)00155-1
  12. Shen W, Li Z, Liu Y. Recent Patents Chem Eng, 1, 27 (2008). https://doi.org/10.2174/2211334710801010027
  13. Xu T, Liu X. Chin J Chem Eng, 16, 401 (2008). https://doi.org/10.1016/S1004-9541(08)60096-8
  14. Gil A, Puente Gdl, Grange P. Microporous Mater, 12, 51 (1997). https://doi.org/10.1016/S0927-6513(97)00057-6
  15. Rodriguez-Reinoso F. Carbon, 36, 159 (1998). https://doi.org/10.1016/S0008-6223(97)00173-5
  16. Moreno-Castilla C, Carrasco-Marin F, Maldonado-Hodar FJ, Rivera-Utrilla J. Carbon, 36, 145 (1998). https://doi.org/10.1016/S0008-6223(97)00171-1
  17. Bansal RC, Goyal M. Activated Carbon Adsorption, Taylor & Francis, Boca Raton (2005).
  18. Adib F, Bagreev A, Bandosz TJ. Environ Sci Technol, 34, 686 (2000). https://doi.org/10.1021/es990341g
  19. Gomez-Serrano V, Acedo-Ramos M, Lopez-Peinado AJ, Valenzuela-Calahorro C. Thermochim Acta, 291, 109 (1997). https://doi.org/10.1016/S0040-6031(96)03098-5
  20. Yang RT. Adsorbents: Fundamentals and Applications, Wiley-Interscience, Hoboken, NJ (2003).
  21. Lozano-Castello D, Lillo-Rodenas MA, Cazorla-Amoros D, Linares-Solano A. Carbon, 39, 741 (2001). https://doi.org/10.1016/S0008-6223(00)00185-8
  22. Oh GH, Park CR. Fuel, 81, 327 (2002). https://doi.org/10.1016/S0016-2361(01)00171-5
  23. Oh GH, Yun CH, Park CR. Carbon Sci, 4, 180 (2003).
  24. Chunlan L, Shaoping X, Yixiong G, Shuqin L, Changhou L. Carbon, 43, 2295 (2005). https://doi.org/10.1016/j.carbon.2005.04.009
  25. Yun CH, Park YH, Park CR. Carbon, 39, 559 (2001). https://doi.org/10.1016/S0008-6223(00)00163-9
  26. El-Hendawy ANA, Alexander AJ, Andrews RJ, Forrest G. J Anal Appl Pyrolysis, 82, 272 (2008). https://doi.org/10.1016/j.jaap.2008.04.006
  27. Girgis BS, Smith E, Louis MM, El-Hendawy ANA. J Anal Appl Pyrolysis, 86, 180 (2009). https://doi.org/10.1016/j.jaap.2009.06.002
  28. Fathy NA, Girgis BS, Khalil LB, Farah JY. Carbon Lett, 11, 224 (2010). https://doi.org/10.5714/CL.2010.11.3.224
  29. Gomez-Serrano V, Cuerda-Correa EM, Fernandez-Gonzalez MC, Alexandre-Franco MF, Macias-Garcia A. Mater Lett, 59, 846 (2005). https://doi.org/10.1016/j.matlet.2004.10.064
  30. Cordero T, Rodriguez-Mirasol J, Tancredi N, Piriz J, Vivo G, Rodriguez JJ. Ind Eng Chem Res, 41, 6042 (2002). https://doi.org/10.1021/ie020210f
  31. El-Hendawy ANA. Carbon, 41, 713 (2003). https://doi.org/10.1016/S0008-6223(03)00029-0
  32. Malik DJ, Strelko Jr V, Streat M, Puziy AM. Water Res, 36, 1527 (2002). https://doi.org/10.1016/S0043-1354(01)00348-7
  33. Choma J, Jaroniec M. Adsorpt Sci Technol, 16, 295 (1998). https://doi.org/10.1177/026361749801600406
  34. Imamoglu M, Tekir O. Desalination, 228, 108 (2008). https://doi.org/10.1016/j.desal.2007.08.011
  35. Giles CH, MacEwan TH, Nakhwa SN, Smith D. J Chem Soc, 3973 (1960). https://doi.org/10.1039/jr9600003973
  36. Tangjuank S, Insuk N, Tontrakoon J, Udeye V. World Acad Sci Eng Technol, 52, 110 (2009).
  37. Kobya M, Demirbas E, Senturk E, Ince M. Bioresour Technol, 96, 1518 (2005). https://doi.org/10.1016/j.biortech.2004.12.005
  38. Ferro-Garcia MA, Rivera-Utrilla J, Bautista-Toledo I, Mingorance MD. Carbon, 28, 545 (1990). https://doi.org/10.1016/0008-6223(90)90051-Y
  39. Fathy NA. Physico-Chemical and Adsorption Studies on Activated Carbon Prepared from Peach Stones [MS Thesis], Cairo University, Cairo, Egypt (2006).

Cited by

  1. Effect of Pore Structure of Activated Carbon on its Electrochemical Performance in Non-Aqueous Electrolyte vol.1004-1005, pp.1662-8985, 2014, https://doi.org/10.4028/www.scientific.net/AMR.1004-1005.596