Abstract
Due to the development of web technologies and the increasing use of smart devices such as smart phone, in recent various web services are widely used in many application fields. In this environment, the topic of supporting personalized and intelligent web services have been actively researched, and an analysis technique on a web-click stream generated from web usage logs is one of the essential techniques related to the topic. In this paper, for efficient analyzing a web-click stream of sequences, a sequential pattern mining technique is proposed, which satisfies the basic requirements for data stream processing and finds a refined mining result. For this purpose, a concept of interesting sequential patterns with a time-interval constraint is defined, which uses not on1y the order of items in a sequential pattern but also their generation times. In addition, A mining method to find the interesting sequential patterns efficiently over a data stream such as a web-click stream is proposed. The proposed method can be effectively used to various computing application fields such as E-commerce, bio-informatics, and USN environments, which generate data as a form of data streams.
웹 관련 기술의 발달 및 스마트폰과 같은 지능형 모바일 서비스 기기의 사용 증가로 인해 오늘날 많은 분야에서 다양한 웹기반 서비스들이 널리 활용되고 있다 이러한 환정에서 개인화 및 지능화된 웹 서비스를 제공하기 위한 연구들이 활발히 진행되고 있으며, 웹 서비스 이용 기록으로부터 생성되는 웹 클릭 스트림에 대한 분석 기술은 관련 기술 중 핵심 기술의 하나이다. 본 논문에서는 순차정보 형태로 발생되는 웹 클릭 스트림에 대한 효율적 분석을 위해서 데이터 스트림 처리에 대한 기본적인 요구사항을 만족하면서 정제된 결과를 얻기 위한 순차패턴 마이닝 방법을 제시한다. 이를 위해서 먼저 순차패턴에 포함되는 단위항목들의 단순 발생 순서뿐만 아니라 발생 시간 정보를 추가로 활용하는 시간 간격 제한 관심 순차패턴을 정의하고, 이어서 웹 클릭 스트림과 같은 데이터 스트림에서 이를 효율적으로 탐색하기 위한 마이닝 방법을 제안한다. 해당 연구 결과는 웹 클릭 스트림뿐만 아니라 전자상거래, 생물정보학 및 USN 환경 등과 같이 데이터 스트림 형태로 정보를 발생시키는 여러 컴퓨터 용용 분야에서 유용하게 활용될 수 있을 것이다.