DOI QR코드

DOI QR Code

Autothermal Reforming Reaction of Methane using Ni-Ru/$Al_2O_3$-MgO Metallic Monolith Catalysts

Ni-Ru/$Al_2O_3$-MgO 금속 모노리스 촉매체를 이용한 메탄의 자열 개질반응

  • Lee, Chang-Ho (Department of Chemical Engineering, Chungbuk National Univ.) ;
  • Lee, Tae-Jun (Department of Chemical Engineering, Chungbuk National Univ.) ;
  • Shin, Jang-Sik (RTI Engineering Co., Ltd.) ;
  • Lee, Jong-Dae (Department of Chemical Engineering, Chungbuk National Univ.)
  • Received : 2011.09.03
  • Accepted : 2011.09.23
  • Published : 2011.09.30

Abstract

The autothermal reforming reaction of methane was investigated to produce hyd rogen with Ni/$CeO_2-ZrO_2$, Ni/$Al_2O_3$-MgO and Ni-Ru/$Al_2O_3$-MgO catalysts. Honeycomb metalli c monolith was applied in order to obtain high catalytic activity and stability in autothermal r eforming. The catalysts were characterized by XRD, BET and SEM. The influence of various catalysts on hydrogen production was studied for the feed ratio($O_2/CH_4$, $H_2O/CH_4$). The $O_2/CH_4$ and $H_2O/CH_4$ ratio governed the methane conversion and temperature profile of reactor. Th e reactor temperature increased as the reaction shifted from endothermic to exothermic reactio n with increasing $O_2/CH_4$ ratio. Among the catalysts used in the experiment, the Ni-Ru/$Al_2O_3$-MgO catalyst showed the highest activity. The 60% of $CH_4$ conversion was obtained, and th e reactor temperature was maintained $600^{\circ}C$ at the condition of GHSV=$10000h^{-1}$ and feed ratio S/C/O=0.5/1/0.5.

Keywords

References

  1. W. Kreuter and H. Hofmann, Electrolysis : the Important Energy Transdormer in a World of Sustainable Energy, Int. J. Hydrogen Energy, 29, 661 (1998).
  2. S. Ahmed, S. H. D. Lee, E. Doss, C. Pereira, D. Colombo, and M. Krumpelt, Fuel Cells Power Systems, Progress Report, 40 (2000).
  3. S. Ahmed and M. Krumpelt, Hydrogen from Hydrocarbon Fuels for Fuel Cells, Int. J. Hydrogen Energy, 26, 291 (2001). https://doi.org/10.1016/S0360-3199(00)00097-5
  4. S. C. Dantas, J. C. Escritori, R. R. Soares, and C. E. Hori, Effect of different Promoters on Ni/$CeZrO_{2}$ Catalyst for Autothermal Reforming and Partial Oxidation of Methane, Chem. Eng. J., 156, 380 (2010). https://doi.org/10.1016/j.cej.2009.10.047
  5. H. Jung, W. L. Yoon, H. Lee, J. S. Park, J. S. Shin, H. W. La, and J. D. Lee, Fast Start-up Reactor for Partial Oxidation of Methane with Electrically Heated Metallic Monolith Catalyst, J. Power Sources 124, 76 (2003). https://doi.org/10.1016/S0378-7753(03)00604-9
  6. J. D. Lee, M. G. Kang, and T. J. Lee, Methane Steam Reforming over Ni/$CeO_{2}$-$ZrO_{2}$ Loaded on Fe-Cr Alloy Honeycomb Monolith, J. of Korean Oil Chemists' Soc. 24, 427 (2007).
  7. Y. S. Seo, A. Shirley, S. T. Kolaczkowski, Evaluation of Thermodynamically Favourable Operating Conditions for Production of Hydrogen in three Different Reforming Technologies, J. Power Sources 108, 213 (2002). https://doi.org/10.1016/S0378-7753(02)00027-7
  8. T. J. Lee, K. T. Cho, and J. D. Lee, Autothermal Reforming of Methane using Metallic Monolith Catalyst Coated Ni/$CeO_{2}$-$ZrO_{2}$, Korean Chem. Eng. Res., 45, 663 (2007).
  9. M. G. Kang, T. J. Lee, and J. D. Lee, Influence of Ni/$CeO_{2}$-$ZrO_{2}$ Catalysts on Methane Autothermal Reforming, Korean Chem. Eng. Res., 47, 17 (2009).
  10. C. H. Lee, J. S. Shin, and J. D. Lee, Autothermal Reforming Reaction of LFG over Ni/$Al_{2}O_{3}$-MgO Metallic Monolith Catalysts, J. of the Korean Oil Chemists' Soc., 28, 126 (2011).
  11. S. Cavallaro, V. Chiodo, S. Freni, N. Mondello, and F. Frusteri, Performance of Rh/$Al_{2}O_{3}$ Catalyst in the Steam Reforming of Ethanol: $H_{2}$ Production for MCFC, Appl. Catal. A : General, 249, 119 (2003). https://doi.org/10.1016/S0926-860X(03)00189-3
  12. J. A. C. Dias, J. M. Assaf, Autothermal Reforming of Methane over Ni/${\gamma}-Al_{2}O_{3}$ Catalyst: the Enhancement Effect of Small Quantities of Noble Metals, J. Power Sources, 130, 106 (2004). https://doi.org/10.1016/j.jpowsour.2003.11.053
  13. H. S. Roh, and K. -W. Jun, Carbon Dioxide Reforming of Methane over Ni Catalysts Supported on $Al_{2}O_{3}$ Modified with $La_{2}O_{3}$, MgO, and CaO, Catal. Surv. Asia, 12, 239 (2008). https://doi.org/10.1007/s10563-008-9058-0
  14. S. Ayabe, H. Omoto, T. Utaka, R. Kikuchi, K. Sasaki, Y. Teraoka and K. Eguchi, Catalytic Autothermal Reforming of Methane and Propane over Supported Metal Catalysts, Appl. Cata. A, 241, 261 (2003). https://doi.org/10.1016/S0926-860X(02)00471-4
  15. P. K. Cheekatamarla and A. M. Lane, Catalytic Autothermal Reforming of Diesel Fuel for Hydrogen Generation in Fuel Cells: II. Catalyst Poisoning and Characterization Studies, J. Power Sources, 154, 223 (2006). https://doi.org/10.1016/j.jpowsour.2005.04.011