DOI QR코드

DOI QR Code

생태지표를 이용한 거제한산만 굴양식장의 생태학적 수용능력 산정

Estimation of Ecological Carrying Capacity for Oyster Culture by Ecological Indicator in Geoje-Hansan Bay

  • 이원찬 (국립수산과학원 어장환경과) ;
  • 조윤식 (국립수산과학원 어장환경과) ;
  • 홍석진 (국립수산과학원 어장환경과) ;
  • 김형철 (국립수산과학원 어장환경과) ;
  • 김정배 (국립수산과학원 어장환경과) ;
  • 이석모 (부경대학교 생태공학과)
  • Lee, Won-Chan (Marine Environment Research Division, National Fisheries Research & Development Institute) ;
  • Cho, Yoon-Sik (Marine Environment Research Division, National Fisheries Research & Development Institute) ;
  • Hong, Sok-Jin (Marine Environment Research Division, National Fisheries Research & Development Institute) ;
  • Kim, Hyung-Chul (Marine Environment Research Division, National Fisheries Research & Development Institute) ;
  • Kim, Jeong-Bae (Marine Environment Research Division, National Fisheries Research & Development Institute) ;
  • Lee, Suk-Mo (Ecological Engineering, Pukyung National University)
  • 투고 : 2011.09.22
  • 심사 : 2011.12.26
  • 발행 : 2011.12.31

초록

전 세계적으로 연안양식산업의 중요성은 날로 증대되고 있지만, 반폐쇄성 내만의 연안환경은 양식의 장기화 및 과밀식에 의하여 연안 오염이 가중되고 있다. 지속적인 연안양식을 위하여, 해양생태계에 부하를 주지 않는 생태학적 수용능력 산정을 통한 친환경적 어장관리의 필요성이 대두되고 있다. 생태학적 수용능력 산정 모델링의 경우, 전체 생태계와 모든 양식활동을 고려해야 하기 때문에, 그 개발 및 적용에 있어 아직 초기단계에 있다. 대안으로, 양식장의 생태학적 능률을 산정하는 생태지표에 대한 요구가 있다. 본 연구는 대상해역의 기초생산력과 굴 양식장의 섭취율을 고려한 여과압 지표를 사용하여 생태학적 수용능력 산정을 시도하였다. 2008년, 거제한산만에 시설되어있는 굴 양식장의 여과압 지표값은 0.203으로 나타났으며, 생산량은 4,935M/T로서 49개체/$m^3$로 시설되어 있다. 거제한산만의 현재 시설된 굴 양식장과 환경적 특성에 따라, 해양생태계에 부하를 주지 않는 생태학적 수용능력에 관해 새로이 산정된 여과압 지표는 0.102였다. 결과적으로, 거제한산만의 굴 양식장의 생태학적 수용능력은 현 생산량에서 49.8% 저감된 2,480M/T, 25개체/$m^3$였고, 이는 생태학적 과정, 종, 군집에 현저한 변화를 주지 않고서 거제한산만에 도입될 수 있는 양식장의 수용능력을 나타낸다. 본 연구는 굴 양식장의 지속적인 생산을 위하여 생태학적 수용능력을 산정할 수 있는 생태지표를 활용하였으며, 이는 친환경적 어장관리의 과학적 근거로 활용될 수 있다.

The importance of aquafarming is increasing all over the world, however the coastal environment in the semi-closed inner bay has been aggravated due to the long term production and the high stocking density. For the sustainable aquafarming, there is a requirement for a eco-friendly fishery management by the estimation of ecological carrying capacity. The model development and application is still in the initial step, because it has to consider the whole ecosystem and all culture activities. As an alternative, there is a requirement for ecological indicator to assess the ecological performance. This study tried the estimation of ecological carrying capacity using ecological indicator. The production and the facility of the oyster farms was 4,935M/T, $49ind./m^3$ in Geoje-Hansan Bay(2008). Filtration pressure indicator was 0.203 which could provide a guidance on the present level of culture development. According to the environmental characteristics and the present oyster farms in Geoje-Hansan Bay, the newly assessed filtration pressure for the acceptable ecological carrying capacity was 0.102. Consequently, ecological carrying capacity in Geoje-Hansan Bay was 2,480M/T, $25ind./m^3$ and this represents the level of culture that can be introduced into Geoje-Hansan Bay without leading to significant changes to ecological process, species, populations or communities. Our study utilized the ecological indicator to estimate ecological carrying capacity of oyster farming for sustainable productivity and this could be the scientific basis for the eco-friendly fishery management.

키워드

참고문헌

  1. Bacher, C., P. Duarte, J. G. Ferreira, M. Heral and O. Raillard(1998), Assessment and comparison of the Marennes-Oleron Bay (France) and Carlingford Lough (Ireland) carrying capacity with ecosystem models, Aquatic Ecology, Vol. 31, pp. 379-394.
  2. Bierman, Jr. V. J. and D. M. Dolan(1981), Modeling of phytoplankton-nutrient dynamics in Saginaw Bay, Lake Huron, Journal of Great Lakes Research, Vol. 7, No. 4, pp. 409-439. https://doi.org/10.1016/S0380-1330(81)72069-0
  3. Carver, C. E. A. and A. L. Mallet(1990), Estimating the carrying capacity of a coastal inlet for mussel culture, Aquaculture, Vol. 88, pp. 39-53. https://doi.org/10.1016/0044-8486(90)90317-G
  4. Cho, E. I., C. K. Park and S. M. Lee(1996), Estimation of carrying capacity in Kamak Bay(II), J. Korean Fish. Soc., Vol. 29, No. 5, pp. 709-715.
  5. Cho, Y. S., S. J. Hong, S. E. Park, R. H. Jung, W. C. Lee and S. M. Lee(2010), Application of ecological indicator to sustainable use of oyster culture grounds in Geoje-Hansan Bay, Korea, Journal of the Korean society of marine environment & safety, Vol. 16, No. 1, pp. 21-29.
  6. Choi, W. J., Y. Y. Chun, J. H. Park and Y. C. Park(1997), The influence of environmental characteristics on the fatness of Pacific Oyster, Crassostrea gigas, in Hansan-Koje Bay, J. Korean Fish. Soc., Vol. 30, No. 5, pp. 794-803.
  7. Cromey, C. J., T. D. Nickell and K. D. Black(2002), DEPOMOD-modelling the deposition and biological effects of waste solids from marine cage farms, Aquaculture, Vol. 214, pp. 211-239. https://doi.org/10.1016/S0044-8486(02)00368-X
  8. Dame, R. F.(1996), Ecology of Marine Bivalves, CRC Press, p. 254.
  9. Duarte, P., R. Meneses, A. J. S. Hawkins, M. Zhu, J. Fang and J. Grant(2003), Mathematical modelling to assess the carrying capacity for multi-species culture within coastal waters, Ecological Modelling, Vol. 168, pp. 109-143. https://doi.org/10.1016/S0304-3800(03)00205-9
  10. Ferreira, J. G., A. J. S. Hawkins and S. B. Bricker(2007), Management of productivity, environmental effects and profitability of shellfish aquaculture, the Farm Aquaculture Resource Management (FARM) model, Aquaculture, Vol. 264, pp. 160-174. https://doi.org/10.1016/j.aquaculture.2006.12.017
  11. Gibbs, M. T.(2004), Interactions between bivalve shellfish farms and fishery resources, Aquaculture, Vol. 240, pp. 267-296. https://doi.org/10.1016/j.aquaculture.2004.06.038
  12. Gibbs, M. T.(2007), Sustainability performance indicators for suspended bivalve aquaculture activities, Ecological Indicators, Vol. 7, pp. 94-107. https://doi.org/10.1016/j.ecolind.2005.10.004
  13. Hawkins, A. J. S., P. Duarte, J. G. Fang, P. L. Pascoe, J. H. Zhang, X. L. Zhang and M. Y. Zhu(2002), A functional model of responsive suspension-feeding and growth in bivalve shellfish, configured and validated for the scallop Chlamys farreri during culture in China, Journal of Experimental Marine Biology and Ecology, Vol. 281, pp. 13-40. https://doi.org/10.1016/S0022-0981(02)00408-2
  14. Horiguchi, F., K. Nakata, P. Y. Lee, W. J. Choi, C. K. Kim and T. Terasawa(1998), Mathematical eco-hydrodynamical model application in Chinhae Bay, J. Adv. Mar. Sci. Tech. Soci., Vol. 4, No. 1, pp. 81-94.
  15. Inglis, G. J., B. J. Hayden and A. H. Ross(2000), An overview of factors affecting the carrying capacity of coastal embayments for mussel culture. Report for Ministry for the environment, NIWA report CHC00/69, p. 31.
  16. Jiang, W. M. and M. T. Gibbs(2005), Predicting the carrying capacity of bivalve shellfish culture using a steady, linear food web model, Aquaculture, Vol. 244, pp. 171-185. https://doi.org/10.1016/j.aquaculture.2004.11.050
  17. Jordan, T. E. and I. Valiela(1982), A nitrogen budget for the ribbed bivalve, Geukensia demissa, and its significance in nitrogen flow in a New England salt marsh, Limn. Oceanogr., Vol. 27, pp. 75-90. https://doi.org/10.4319/lo.1982.27.1.0075
  18. Klinck, J. M., E. N. Powell, E. E. Hofmann, E. A. Wilsonand and S. M. Ray(1992), Modeling oyster populations: The effect of density and food supply on production, Pro. Adv. Mar. Tech. Conf., Vol. 5, pp. 85-105.
  19. Kobayashi, M., E. E. Hofmann, E. N. Powell, J. M. Klink and K. Kusaka(1997), A population dynamics model for the Japanese oyster, Crassostrea gigas, Aquaculture, Vol. 149, pp. 285-321. https://doi.org/10.1016/S0044-8486(96)01456-1
  20. Lee, W. C., H. C. Kim, W. J. Choi, P. Y. Lee, J. H. Koo and C. K. Park(2002), Modification of an ecosystem model for carrying capacity of shellfish system, J. Korean. Fish. Soc., Vol. 35, No. 4, pp. 386-394.
  21. McKindsey C. W., H. Thetmeyer, T. Landry and W. Silvert(2006), Review of recent carrying capacity models for bivalve culture and recommendations for research and management, Aquaculture, Vol. 261, pp. 451-462. https://doi.org/10.1016/j.aquaculture.2006.06.044
  22. NFRDI(2000), Annual report of Korean marine environment monitoring, National Fisheries Research Development Institute, Vol. 5, p. 155,
  23. NFRDI(2001), Annual report of Korean marine environment monitoring, National Fisheries Research Development Institute, Vol. 6, p. 155,
  24. NFRDI(2002), Annual report of Korean marine environment monitoring, National Fisheries Research Development Institute, Vol. 7, p. 193,
  25. NFRDI(2003), Annual report of Korean marine environment monitoring, National Fisheries Research Development Institute, Vol. 8, p. 236,
  26. NFRDI(2004), Annual report of Korean marine environment monitoring, National Fisheries Research Development Institute, Vol. 9, p. 400,
  27. NFRDI(2005), Annual report of Korean marine environment monitoring, National Fisheries Research Development Institute, Vol. 10, p. 400,
  28. NFRDI(2006), Annual report of Korean marine environment monitoring, National Fisheries Research Development Institute, Vol. 11, p. 396,
  29. NFRDI(2007), Annual report of Korean marine environment monitoring, National Fisheries Research Development Institute, Vol. 12, p. 408,
  30. NFRDI(2008), Annual report of Korean marine environment monitoring, National Fisheries Research Development Institute, Vol. 13, p. 400.
  31. NFRDI(2009), Environmental research of aquaculture farm in Korea, National Fisheries Research Development Institute, 1st (2008) Report, p. 243.
  32. Officer, C. B., T. J. Smayda and R. Mann(1982), Benthic filter feeding: a natural eutrophication control, Mar. Ecol. Res. Ser., Vol. 9, pp. 203-210. https://doi.org/10.3354/meps009203
  33. Park, J. S., H. C. Kim, W. J. Choi, W. C. Lee, D. M. Kim, J. H. Koo and C. K. Park(2002), Estimating the carrying capacity of a coastal Bay for oyster culture, J. Korean. Fish. Soc., Vol. 35, No. 4, pp. 408-416.
  34. Smaal, A. C. and T. C. Prins(1993), The uptake of organic matter and the release of inorganic nutrients by bivalve suspension feeder beds, In: Dame, R.F. (Ed.), Bivalve Filter Feeders in Estuarine and Coastal Ecosystem Processes, Springer Verlag Heidelberg, pp. 273-298.
  35. Statistics Korea(2000-2008), Fishery production survey, Retrieved from http://fs.fips.go.kr/main.jsp on August 20.

피인용 문헌

  1. Estimating the input of submarine groundwater discharge (SGD) and SGD-derived nutrients in Geoje Bay, Korea using 222 Rn-Si mass balance model vol.110, pp.1, 2016, https://doi.org/10.1016/j.marpolbul.2016.06.073
  2. Numerical simulation for dispersion of anthropogenic material near shellfish growing area in Geoje Bay vol.28, pp.3, 2016, https://doi.org/10.13000/JFMSE.2016.28.3.831
  3. Estimation of Stocking Density using Habitat Suitability Index and Ecological Indicator for Oyster Farms in Geoje-Hansan Bay vol.18, pp.3, 2012, https://doi.org/10.7837/kosomes.2012.18.3.185
  4. Distributions of Organic Matter and Trace Metals in Surface Sediments around a Manila Clam Ruditapes phillippinarum Farming Area in Gomso Bay, Korea vol.48, pp.4, 2015, https://doi.org/10.5657/KFAS.2015.0555
  5. Community Structure and Health Assessment of Macrobenthic Assemblages at Spring and Summer in Geoje-Hansan Bay, Southern Coast of Korea vol.22, pp.1, 2016, https://doi.org/10.7837/kosomes.2016.22.1.027
  6. Organic Enrichment and Pollution in Surface Sediments from Shellfish Farming in Yeoja Bay and Gangjin Bay, Korea vol.46, pp.4, 2013, https://doi.org/10.5657/KFAS.2013.0424
  7. 패류양식해역인 고성만 주변 표층 퇴적물의 유기물과 중금속 분포 및 오염현황 vol.23, pp.6, 2011, https://doi.org/10.7837/kosomes.2017.23.6.699
  8. 살포식 패류양식해역인 진주만 표층 퇴적물의 오염도 vol.26, pp.4, 2011, https://doi.org/10.7837/kosomes.2020.26.4.392