Study on Types and Distributional Properties of Abandoned Channels in Korea

우리나라의 구하도 유형과 분포 특성

  • Lee, Gwang-Ryul (Department of Geography Education, Teachers College, Kyungpook National University)
  • 이광률 (경북대학교 사범대학 지리교육과)
  • Received : 2011.04.22
  • Accepted : 2011.06.23
  • Published : 2011.06.30

Abstract

The types, distributional and shape properties of abandoned channels in Korea are classified and examined. There are 409 abandoned channels in Korea and they can be classified into the 6 types such as the incised meander cutoff, stream piracy, distributary, artificial incised meander neck-cutoff, channel straightening of free meander and distributary streams. The abandoned channels by incised meander neck-cutoff showing the most frequency with 266, have the topographical properties of high altitude and steep relief and frequently distribute in Gangwon and Gyeonbuk Province and in the upper reaches of main stream of Nakdong-River, and Dal-River and Pyeongchang-River, tributaries of Namhan-River. The most frequency areas of abandoned channels by distributary, channel straightening of free meander and distributary streams are the lower reaches of Namhan-River and main stream in the lower reaches of Nakdong-River, Mangyeong-River and Yeongsan-River, and Geumho-River, respectively. The abandoned channles by incised meandering neck-cutoff and stream piracy are relatively used as farmlands or forests due to the high altitude and relative altitude from the river bed.

본 연구는 우리나라에 분포하는 구하도의 유형을 구분하고 유형별 분포와 형상 특성을 분석하였다. 현재 우리나라에는 감입곡류 목 절단, 하천쟁탈, 분류, 감입곡류 하천의 인위적인 절단, 자유곡류 하도의 직강화, 분류 하도의 직강화에 의한 6가지 유형의 구하도가 총 409개 분포하고 있다. 이 가운데 266개로 가장 많은 감입곡류 목 절단 구하도는 고도가 높고 기복이 심하며 감입곡류 하천이 많은 강원과 경북에 많으며, 낙동강 본류의 상류, 남한강의 지류인 달천과 평창강 등에서 분포 빈도가 높다. 분류에 의한 구하도는 남한강 하류와 낙동강 하류의 본류, 자유곡류 하도의 직강화에 의한 구하도는 만경강과 영산강, 분류 하도의 직강화에 의한 구하도는 금호강에서 분포 빈도가 가장 높다. 감입곡류 목 절단과 하천쟁탈에 의한 구하도는 나머지 유형에 비해 해발고도와 하상비고가 매우 높아서, 농경지나 산림으로의 토지이용 비율이 상대적으로 높다.

Keywords

References

  1. Baker, V. R., Benito, G. and Rudoy, A. N., 1993, Paleohydrology of Late Pleistocene Superflooding, Altay Mountains, Siberia, Science, 259, 348-350. https://doi.org/10.1126/science.259.5093.348
  2. Brewer, P. A. and Lewin, J., 1998, Planform cyclicity in an unstable reach: complex fluvial response to environmental change, Earth Surface Processes and Landforms, 23(11), 989-1008. https://doi.org/10.1002/(SICI)1096-9837(1998110)23:11<989::AID-ESP917>3.0.CO;2-4
  3. Dury, G. H., 1965, Theoretical Implication of Underfit Streams, United States Geological Survey Professional Paper 452-C, Washington.
  4. Goudie, A. S., 2004, Encyclopedia of Geomorphology, Routledge, New York.
  5. Jeong, S. M. and Lee, M. B., 2004, Change of Estuary Landscape in Suncheon Bay, South Coast of Korea, Journal of the Korean Geomorphological Association, 11(2), 127-139 (in Korea).
  6. Lee, G. R. and Yoon S. O., 2004, Distribution Characteristics of the Incised Meander Cutoff in Gyeonggi and Gangwon Provinces, Central Korea, Journal of the Korean Geography Society, 39(6), 845-862 (in Korea).
  7. Lee, M. B., Kim, N. S., Lee, G. R. and Han, U., 2005a, Analysis of Landscape Changes of Channel Meandering by Satellite Images in Lower Reach of Daedong and Jaeryeong Rivers, West North Korea, Journal of the Korean Geomorphological Association, 12(1), 91-102 (in Korea).
  8. Lee, M. B., Lee, G. R., Kim, N. S., Shin, K. H. and Nam, H. J., 2005b, A Study oil the Geomorphic Changes in Yeonbaek Coastal Plain by Using Satellite Images and Topographical Map, West Coast of North Korea, Journal of the Korean Geomorphological Association, 12(2), 73-85 (in Korea).
  9. Ministry of Environment, 2008, Discovering Wetlands, Ministry of Environment . UNDP/GEF Korea Wetland Project, Gwacheon (환경부, 2008, 습지를 찾아서, 환경부.UNDP/GEF 국가습지보전사업관리단, 과천).
  10. Odum, E. P., 1997, Ecology: A Bridge Between Science and Society, Sinauer Associates, Sunderland.
  11. Page, K. J., Nanson, G. C. and Price, D., 1996, Chronology of Murrumbidgee River palaeochannels on the Riverine Plain, southeastern Australia, Journal of Quaternary Science, 11(4), 311-326. https://doi.org/10.1002/(SICI)1099-1417(199607/08)11:4<311::AID-JQS256>3.0.CO;2-1
  12. Page, K. J. and Nanson, G. C., 1996, Stratigraphic architecture resulting from Late Quaternary evolution of the riverine plain, southeastern Australia, Sedimentology, 43, 927-945. https://doi.org/10.1111/j.1365-3091.1996.tb01512.x
  13. Rotnicki, K., 1983, Modelling past discharges of meandering river, in G. K., (ed.) Gregory, Background to Palaeohydrology, Wiley, 321-354.
  14. Sapozhnikov, V. B. and Foufoula-Georgiou, E., 1996, Self-affinity in braided rivers, Water Resources Research, 32(5), 1429-1439. https://doi.org/10.1029/96WR00490
  15. Shaw, J., Munro-Stasiuk, M., Sawyer, B., Beaney, C., Lesemann, J., Musacchio, A., Rains, B. and Young, R. R., 1999, The Channeled Scabland: back to Bretz?, Geology, 27, 605-608. https://doi.org/10.1130/0091-7613(1999)027<0605:TCSBTB>2.3.CO;2
  16. Son, I., 2009, A Geomorphology on the Baeckhwa Mountains, Journal of the Korean Geomorphological Association, 16(4), 1-12 (in Korea).
  17. Song, U. G., 1993, Geomorphic Development of Incised Meander in the Middle and South Part of the Korean Peninsula, Kyungpook University Doctor Thesis.
  18. Suh, H. J. 1988, A Study on the process of the abandoned channel formed by incised meander, Journal of Geography Education, 20, 43-66 (in Korea).
  19. Tabata, K. K. and Hickin, E. J., 2003, Interchannel hydraulic geometry and hydraulic efficiency of the anastomosing Columbia River, southeastern British Columbia, Canada, Earth Surface Processes and Landforms, 28(8), 837-852. https://doi.org/10.1002/esp.497