DOI QR코드

DOI QR Code

Implant stability evaluation according to the bone condition, fixture diameter and shape in the osseointegration simulated resin model

골유착 재현 레진 모델에서 골 상태 및 임플란트 형태에 따른 임플란트 안정성에 관한 연구

  • Kwon, Taek-Ka (Department of Prosthodontics, School of Dentistry, Catholic University) ;
  • Yeo, In-Sung (Department of Prosthodontics, School of Dentistry, Seoul National University) ;
  • Kim, Sung-Hun (Department of Prosthodontics, School of Dentistry, Seoul National University) ;
  • Han, Jung-Suk (Department of Prosthodontics, School of Dentistry, Seoul National University) ;
  • Lee, Jai-Bong (Department of Prosthodontics, School of Dentistry, Seoul National University) ;
  • Yang, Jae-Ho (Department of Prosthodontics, School of Dentistry, Seoul National University)
  • 권택가 (가톨릭대학교 치과보철학교실) ;
  • 여인성 (서울대학교 치과대학 치과보철학교실) ;
  • 김성훈 (서울대학교 치과대학 치과보철학교실) ;
  • 한중석 (서울대학교 치과대학 치과보철학교실) ;
  • 이재봉 (서울대학교 치과대학 치과보철학교실) ;
  • 양재호 (서울대학교 치과대학 치과보철학교실)
  • Received : 2010.10.05
  • Accepted : 2011.03.11
  • Published : 2011.04.29

Abstract

Purpose: Resonance frequency analysis, Periotest, and removal torque (RT) test were known as the methods to assess implant stability. The results of these methods are affected by the bone condition, implant diameter and shape. The purpose of this study is to access the meaning and the correlationship of the resonance frequency analysis, Periotest and RT test in osseointegration simulated acrylic resin when the engaged bone thickness and peri-implant bone defect are changed. Materials and methods: To simulate osseointegration, the fixture was fixed to an aluminum mold with a screw. Acrylic resin powder and liquid were poured into the mold for polymerization. The engaged resin thickness with implant was controlled. Simulated cortical bone thicknesses were 1, 3, 5 and 10 mm. Additional 1, 3 and 5 mm peri-implant bone defects were simulated. Three types of implants were used; 4 mm diameter implants of straight shape, 4 mm diameter implants of tapered shape and 5 mm diameter implants of tapered shape. Five fixtures per each type were tested in respective bone condition. Resonance frequency analysis and Periotest were evaluated in all bone conditions. Peak removal torque was measured at simulated cortical bone thicknesses of 1 and 3 mm. The statistical analysis was performed with the Kruskal-Wallis test, Mann-Whitney U test, and Spearman test using a 95% level of confidence. Results: With increasing engaged bone depth, the Implant Stability Quotient (ISQ) values increased and the Periotest values (PTVs) decreased (P<.001, P<.001). With increasing peri-implant bone defect, ISQ values decreased and PTVs increased (P<.001). When the diameter of implant increased, ISQ values increased and Periotest values (PTV) decreased (P<.001). There was a strong correlation between ISQ values and PTVs (r = -0.99, P<.001). Furthermore, the peak removal torque values had weak correlations with both ISQ values and PTVs (r = 0.52, P<.001 ; r = -0.52, P<.001). Conclusion: This study confirmed favorable implant stability with increasing engaged bone depth and implant diameter and decreasing peri-implant bone defect. ISQ values and PTVs showed strong correlation with each other and not with the peak removal torque values.

연구 목적: 자기공명주파수 분석, 페리오테스트, 풀림 토크는 임플란트의 안정성을 측정하기 위한 방법으로 알려져 있다. 이 방법들은 골 상태와 임플란트 형태에 영향을 받는다. 본 연구에서는 골유착이 재현된 아크릴 레진 실험 모델에서 임플란트가 결합된 골의 양을 변화하고 경부의 골 상실양이 증가하였을 경우, 자기공명주파수 분석, 페리오테스트, 풀림 토크 측정에 어떠한 영향을 주는지 알아보고 이들 상호간의 관계를 알아보고자 하였다. 연구 재료 및 방법: 골 유착을 재현하기 위하여 임플란트를 알루미늄 틀에 나사로 고정한 후 자가중합형 아크릴릭 레진의 가루와 용액을 틀 안에 부어서 중합을 시켰다. 임플란트와 결합된 레진의 두께를 조정하여 골 결합 두께를 각각 1, 3, 5, 10 mm인 경우로 재현하였다. 그 후 임플란트 주변 경부 골 상실 양이 1, 3, 5 mm인 경우를 재현하였다. 각각의 재현된 골 조건에서는 4 mm 직경의 직선형 임플란트, 같은 직경의 tapered 형 임플란트, 5 mm 직경의 tapered 형의 3가지 임플란트가 각각 5개씩 사용되었다. 모든 골 조건에서 자기공명주파수 분석과 페리오테스트 측정이 이루어졌으며 골 결합 두께 1, 3 mm 시편에서는 풀림 토크가 측정되었다. 결과: 골 결합 두께가 증가하거나 임플란트 직경이 증가할수록 통계적으로 유의하게 ISQ 값은 증가하였고, 페리오테스트 값은 감소하였다 (P<.001, P<.001). 임플란트 경부에 주위 골 상실 양이 커질수록 ISQ 값은 감소하였고, 페리오테스트 값은 증가하였다 (P<.001). ISQ 값과 페리오테스트 t값은 매우 강한 상관관계를 나타냈다 (r = -0.99, P<.001). ISQ값과 풀림토크는 약한 상관관계를 나타냈으며 (r = 0.52, P<.001), 페리오테스트 값과 풀림 토크도 약한 상관관계를 나타냈다 (r = -0.52, P<.001). 결론: 레진으로 재현한 골의 양이 증가할수록, 임플란트의 직경이 증가할수록, 경부의 골 상실양이 적을수록 임플란트 안정성이 증가함을 확인할 수 있었다. 또한 본 연구에서는 ISQ 값과 페리오테스트 값의 강한 상관관계를 밝힐 수 있었다.

Keywords

References

  1. Friberg B, Jemt T, Lekholm U. Early failures in 4,641 consecutively placed Branemark dental implants: a study from stage 1 surgery to the connection of completed prostheses. Int J Oral Maxillofac Implants 1991;6:142-6.
  2. Meredith N. Assessment of implant stability as a prognostic determinant. Int J Prosthodont 1998;11:491-501.
  3. Cochran DL, Schenk RK, Lussi A, Higginbottom FL, Buser D. Bone response to unloaded and loaded titanium implants with a sand-blasted and acid-etched surface: a histometric study in the canine mandible. J Biomed Mater Res 1998;40:1-11. https://doi.org/10.1002/(SICI)1097-4636(199804)40:1<1::AID-JBM1>3.0.CO;2-Q
  4. Schulte W, Lukas D. The Periotest method. Int Dent J 1992;42:433-40.
  5. Olive J, Aparicio C. Periotest method as a measure of osseointegrated oral implant stability. Int J Oral Maxillofac Implants 1990;5:390-400.
  6. Meredith N, Friberg B, Sennerby L, Aparicio C. Relationship between contact time measurements and PTV values when using the Periotest to measure implant stability. Int J Prosthodont 1998;11:269-75.
  7. Aparicio C. The use of the Periotest value as the initial success criteria of an implant: 8-year report. Int J Periodontics Restorative Dent 1997;17:150-61.
  8. Walker L, Morris HF, Ochi S. Periotest values of dental implants in the first 2 years after second-stage surgery: DICRG interim report no. 8. Dental Implant Clinical Research Group. Implant Dent 1997;6:207-12. https://doi.org/10.1097/00008505-199700630-00007
  9. Truhlar RS, Morris HF, Ochi S. Stability of the bone-implant complex. Results of longitudinal testing to 60 months with the Periotest device on endosseous dental implants. Ann Periodontol 2000;5:42-55. https://doi.org/10.1902/annals.2000.5.1.42
  10. Meredith N, Alleyne D, Cawley P. Quantitative determination of the stability of the implant-tissue interface using resonance frequency analysis. Clin Oral Implants Res 1996;7:261-7. https://doi.org/10.1034/j.1600-0501.1996.070308.x
  11. Atsumi M, Park SH, Wang HL. Methods used to assess implant stability: current status. Int J Oral Maxillofac Implants 2007;22:743-54.
  12. Meredith N, Book K, Friberg B, Jemt T, Sennerby L. Resonance frequency measurements of implant stability in vivo. A cross-sectional and longitudinal study of resonance frequency measurements on implants in the edentulous and partially dentate maxilla. Clin Oral Implants Res 1997;8:226-33. https://doi.org/10.1034/j.1600-0501.1997.080309.x
  13. Rasmusson L, Meredith N, Cho IH, Sennerby L. The influence of simultaneous versus delayed placement on the stability of titanium implants in onlay bone grafts. A histologic and biomechanic study in the rabbit. Int J Oral Maxillofac Surg 1999;28:224-31. https://doi.org/10.1016/S0901-5027(99)80143-X
  14. Roberts WE, Smith RK, Zilberman Y, Mozsary PG, Smith RS. Osseous adaptation to continuous loading of rigid endosseous implants. Am J Orthod 1984;86:95-111. https://doi.org/10.1016/0002-9416(84)90301-4
  15. Johansson C, Albrektsson T. Integration of screw implants in the rabbit: a 1-year follow-up of removal torque of titanium implants. Int J Oral Maxillofac Implants 1987;2:69-75.
  16. Roze J, Babu S, Saffarzadeh A, Gayet-Delacroix M, Hoornaert A, Layrolle P. Correlating implant stability to bone structure. Clin Oral Implants Res 2009;20:1140-5. https://doi.org/10.1111/j.1600-0501.2009.01745.x
  17. Gardner MP, Chong AC, Pollock AG, Wooley PH. Mechanical evaluation of large-size fourth-generation composite femur and tibia models. Ann Biomed Eng 2010;38:613-20. https://doi.org/10.1007/s10439-009-9887-7
  18. Heiner AD. Structural properties of fourth-generation composite femurs and tibias. J Biomech 2008;41:3282-4. https://doi.org/10.1016/j.jbiomech.2008.08.013
  19. Chong AC, Friis EA, Ballard GP, Czuwala PJ, Cooke FW. Fatigue performance of composite analogue femur constructs under high activity loading. Ann Biomed Eng 2007;35:1196-205. https://doi.org/10.1007/s10439-007-9284-z
  20. Turkyilmaz I, Sennerby L, Tumer C, Yenigul M, Avci M. Stability and marginal bone level measurements of unsplinted implants used for mandibular overdentures: a 1-year randomized prospective clinical study comparing early and conventional loading protocols. Clin Oral Implants Res 2006;17:501-5. https://doi.org/10.1111/j.1600-0501.2006.01261.x
  21. Tozum TF, Turkyilmaz I, McGlumphy EA. Relationship between dental implant stability determined by resonance frequency analysis measurements and peri-implant vertical defects: an in vitro study. J Oral Rehabil 2008;35:739-44. https://doi.org/10.1111/j.1365-2842.2007.01840.x
  22. Ohta K, Takechi M, Minami M, Shigeishi H, Hiraoka M, Nishimura M, Kamata N. Influence of factors related to implant stability detected by wireless resonance frequency analysis device. J Oral Rehabil 2010;37:131-7. https://doi.org/10.1111/j.1365-2842.2009.02032.x
  23. Tozum TF, Bal BT, Turkyilmaz I, Gulay G, Tulunoglu I. Which device is more accurate to determine the stability/mobility of dental implants? A human cadaver study. J Oral Rehabil 2010;37:217-24. https://doi.org/10.1111/j.1365-2842.2009.02038.x
  24. Turkyilmaz I, Sennerby L, Yilmaz B, Bilecenoglu B, Ozbek EN. Influence of defect depth on resonance frequency analysis and insertion torque values for implants placed in fresh extraction sockets: a human cadaver study. Clin Implant Dent Relat Res 2009;11:52-8. https://doi.org/10.1111/j.1708-8208.2008.00095.x
  25. Turkyilmaz I. A comparison between insertion torque and resonance frequency in the assessment of torque capacity and primary stability of Branemark system implants. J Oral Rehabil 2006;33:754-9. https://doi.org/10.1111/j.1365-2842.2006.01631.x
  26. Al-Nawas B, Wagner W, Grotz KA. Insertion torque and resonance frequency analysis of dental implant systems in an animal model with loaded implants. Int J Oral Maxillofac Implants 2006;21:726-32.