Anisotropic Superconducting Gap of Alkaline-earth Intercalated Graphites: CaC₆ and SrC₆

Youngwook Kim^a, Reinhard K. Kremer^b, and Jun Sung Kim^{*,a}

^a Department of Physics, Pohang University of Science and Technology, Pohang, Korea

^b Max-Planck-Institut fuer Festkoerperforschung, Heisenbergstrasse 1, Stuttgart, Germany

(Received 3 March 2011 revised or reviewed 31 March 2011 accepted 4 April 2011)

알칼리토류 금속이 층간삽입된 흑연의 초전도갭 이방성 김영욱ª, Reinhard K. Kremer^b, 김준성^{*,a}

Abstract

We have investigated the anisotropy of the superconducting properties for CaC_6 and SrC_6 using upper critical fields (H_{c2}) and specific heat (C_p). From the upper critical fields of CaC_6 at different magnetic field orientations, H//c and H// ab, the anisotropy is found to be ~ 5 at low temperatures, much larger than that of SrC_6 . These results are in contrast to the stronger anisotropy in the electronic structure for SrC_6 than for CaC_6 indicating a stronger anisotropy in the superconducting gap in CaC_6 . The findings are confirmed by the temperature dependence of the superconducting specific heat below T_c for CaC_6 and SrC_6 , suggesting the important role of anisotropic electron-phonon coupling in superconducting intercalated graphites.

Keywords : intercalated graphite, upper critical fields, specific heat, anisotropic superconductivity

I. 서론

흑연은 탄소로 이루어진 육각층이 약 3.4 Å 간격을 두고 반데르발스 결합을 통해 약하게 결합되어있는 반면, 평면상으로는 강한 공유결 합으로 되어있는 (탄소간 거리 1.4 Å) 독특한 구조를 가지고 있다. 이런 특이한 구조적 특성 때문에 흑연 층 사이에 반응물질을 삽입시켜 층과 층 사이를 넓힌 새로운 화합물인 흑연층 간화합물을 만들 수 있다 [1]. 금속원자가 층간 삽입된 경우 반응전의 흑연 또는 금속의 성질 과 다른 새로운 특성이 나타나는 데 그 중 대 표적인 것이 초전도 현상이다. 알칼리 금속이 삽입된 흑연층간화합물에서 처음 초전도성이 발견된 이래 [2] 여러 종류의 초전도체가 발견 되었고 2005년에는 Ca이 층간 삽입된 흑연에 서 11.5 K의 상당히 높은 온도의 초전도성이 발견되어 많은 연구가 진행되었다 [3-16].

흑연이 반응물질과 결합될 때 반응물과 흑연 층 간에 전하이동이 수반된다. 알칼리 또는 알 칼리토류 금속이 흑연 내 삽입되면 금속원자에

^{*}Corresponding author. Fax : +82 54 279 5564 e-mail : js.kim@postech.ac.kr

서 흑연 층으로 전하가 주입되어 새로운 전자 밴드인 interlayer전자밴드가 유도되고 이 새로 운 전자밴드와 기존의 흑연의 π 전자밴드간의 전자포논 상호작용으로 초전도성이 발현된다는 것이 밝혀졌다 [6-9]. 이를 바탕으로 Ca 이외에 다른 알칼리토류 금속원자인 Sr과 Ba이 삽입된 흑연층간화합물이 합성되어 초전도성이 연구되 었고 이를 통해 초전도 상전이 온도가 흑연층 간거리에 상당히 민감하다는 사실이 밝혀졌다 [14]. 이러한 결과는 실제로 외부 압력을 걸어 서 흑연층간거리를 작게 했을 때 초전도상전이 온도가 상승하는 것과도 일치한다 [9, 14]. 따라 서 금속이 삽입된 흑연층간화합물에서 전자-포 논 상호작용의 크기는 흑연 층간거리 변화와 이로 인한 interlaver 전자밴드와 탄소 π밴드의 결합정도가 결정적인 역할을 하는 것으로 여겨 진다.

이러한 흑연층간화합물의 전자-포논 상호작 용은 상당한 이방성을 띌 것으로 예상되고 따 라서 초전도성에도 큰 영향을 미칠 것으로 생 각된다. 실제로 Ca이 삽입된 흑연층간화합물의 초전도 갭이 강한 이방성을 가지고 있다는 것 이 이론/실험적으로 제안되었고 [13, 14], 따라 서 이와 같은 전자-포논 상호작용의 이방성 및 이에 대한 초전도성질 변화는 흑연층상구조에 서의 물리현상을 이해하는 중요한 단서를 제공 할 수 있을 것이다. 본 논문에서는 CaC₆와 SrC₆의 초전도갭 이방성을 비교 분석하였다. 합성된 CaC_와 SrC_의 임계자기장, 비열을 측 정하여 얻은 초전도성갭의 이방성이 전자구조 의 이방성과 달리 SrC,에서 더 작다는 것을 확 인하였고, 이런 현상을 전자-포논 상호작용의 이방성으로 설명하였다.

Ⅱ. 실험방법

CaC₆와 SrC₆는 HOPG (highly oriented pyritic graphite)에 금속원자를 삽입하여 합성하였다. CaC₆의 경우는 Ca과 Li을 Ca:Li = 1:6의 성분비 로 섞고 HOPG를 넣은 후 고온으로 가열하여 용액상에서 Ca의 층간 삽입이 이루어지게 하 였다 [5]. 반응온도는 섭씨 350도로 고정하고 반응시간은 15일이었다. SrC₆, BaC₆의 경우는 증 기반응을 사용하였다. HOPG 조각과 Sr, Ba금속 조각을 석영관에 넣은 후 고진공 (P~10⁻⁵ Torr) 상태에서 봉합하고 섭씨 450-500도로 4주간 반 응시켰다. X선 회절 실험은 봉합된 유리모세관 을 이용하여 진행하였고, 자화율과 비열측정은 각각 Quantum Design 사의 MPMS와 PPMS장비 를 이용하여 헬륨와 진공상태에서 진행하였다.

Ⅲ. 결과 및 토의

Fig. 1의 상단에 있는 삽화는 *A*C₆ (A = Ca, Sr, Ba) 시료 격자구조를 개략적으로 보여주는 그 림이다. 금속원소가 층간 삽입되는 경우 흑연 층 위에 세가지 다른 자리 α, β, γ에 놓이게 되 는데, 놓이는 위치의 순서에 따라 적층구조가 결정된다. 예를 들어 금속 원자가 α, β, γ 자리 를 번갈아 가면서 채우는 구조는 αβγ 적층구조 라고 하고 α, β를 번갈아 채우는 경우는 αβ 적층 구조라고 한다 [1].

Fig. 1에서 합성된 *A*C₆(*A* = Ca, Sr, Ba)의 X선 회절결과를 나타내었다. 모든 시료의 경우 Bragg 조건에 맞은 예상 각도위치에서 X선 회 절곡선의 봉우리가 관측되었다. 금속의 내부적 층 구조를 보다 자세히 비교하기 위해 αβγ 구 조와 αβ 구조에 따라 다른 Bragg 조건을 만족 하는 각도 영역을 확대해서 분석을 하면 CaC₆ 의 경우는 αβγ 구조를 가지는 반면 SrC₆과 BaC₆

Fig. 1. (a,b) Crystal structures of CaC₆ (a) and SrC₆ (b) Stacking sequence for each crystal structure is also noted. (c) X-ray diffraction patterns for AC_6 (A = Ca, Sr, Ba) The short bars below the XRD patterns indicate the Bragg positions. The inset shows the magnified XRD patterns with the Bragg positions for $\alpha\beta\gamma$, and $\alpha\beta$ stackings.

의 경우는 αβ 구조를 가지는 것을 확인 할 수 있다 (Fig. 1(c)의 inset). 흑연 층간거리는 삽입된 금 속원소의 크기가 Ca, Sr, Ba순으로 커지면서 각 각 4.525 Å, 4.95 Å, 5.25 Å로 늘어나는 것으로 나타났다.

초전도 성질의 이방성을 관측하기 위해서 임 계자기장의 이방성에 대해 먼저 조사하였다. SrC₆의 경우 H_{c2}(H//ab)와 H_{c2}(H//c)의 비율로 정 의한 임계자기장의 이방성이 2정도로 관측되었 다 [14]. CaC₆의 임계자기장 이방성은 Fig. 2에 서 보는 것과 같이, 자기장의 방향을 흑연층의

Fig. 2. (a) Magnetic field dependence of magnetization (M(H)) of CaC₆ with H//c and H//ab at different temperatures from 10 K (top) to 2 K(bottom) with $\Delta T = 0.5$ K. The $H_{c2}(T)$ was determined at the kink of the susceptibility χ (dM/dH) in a logarithmic scale at *e.g.* 4 K as shown in the inset. (b) Temperature dependence of the resistivity with H//c (top) and H//ab(bottom) at different magnetic fields from 0 to 13 kOe with a step of 1 kOe. The higher fields for H//ab were also noted. (c) The temperature dependence of the upper critical fields for H//c and H//ab determined from magnetization(open) and resistivity(solid). The anisotropy of H_{c2} , H_{c2}^{ab}/H_{c2}^{c} is shown in the inset.

수직 또는 수평인 방향으로 바꾸어 가면서 자 화율을 측정하여 얻었다. 또한 Fig. 2(b)에서 보 는 바와 같이 자기장에 따른 저항곡선을 측정 하여 임계자기장을 저항이 0이 되는 점으로 결 정하였다. Fig. 2(c)는 임계자기장의 온도 의존성 을 그린 것이다. SrC₆과 마찬가지로 임계자기장 의 크기는 자기장이 흑연 층에 수직한 경우에 더 크게 나타났다. H_{c2}(H *# ab*)와 H_{c2}(H *# c*)의 비 율로 정의한 이방성의 크기는 약 5정도임을 확 인하였다. 또한 기존의 초전도체의 임계자기장 을 잘 기술하는 이론 곡선과 비교해 보았을 때 [17] (파란색 실선) 차이가 나는 것을 알 수 있 고 또한 이방성 H_{c2}(H *# ab*)/H_{c2}(H *# c*)가 온도의 존성을 가지는 것을 알 수있다. 이는 초전도 갭의 이방성을 시사하는 결과이다.

초전도 임계자기장의 이방성은 대략 두 가지 의 원인을 생각해 볼 수 있는데 하나는 전자구 조의 이방성, 즉 페르미 속도의 이방성에 기인 한 것이고 다른 하나는 초전도 갭의 이방성에 의한 것이다. 전자구조 계산에 의하면 CaC₆의 페르미 속도의 이방성은 약 2 정도로 실험치에 비해 많이 작다는 것을 알 수 있다. 같은 결론 을 SrC₆ 경우와 비교해서도 얻을 수 있는데, SrC₆의 경우 임계자기장의 이방성이 약 2정도 로 CaC₆ 보다 낮은 수준이다. 앞서 격자구조에 서 논의 한데로 CaC6가 SrC6에 비해서 층간거 리가 작고 전자구조의 이방성도 더 작게 나타 나는데, 임계자기장의 이방성은 예상과 달리 CaC₆에서 더 크게 보인다. 따라서 CaC₆의 상대 적으로 높은 임계자기장의 이방성은 등방성의 초전도 갭으로는 설명할 수가 없다.

보다 직접적으로 초전도갭의 이방성을 확인 하기 위해서 비열측정 결과를 초전도 갭모델 결과와 비교하였다. Fig. 3 (a), (b)는 CaC₆와 SrC₆ 에 대해 자기장이 없는 경우와 임계자기장 이 상의 자기장이 걸린 경우에 대한 비열의 온도 의존성을 그린 그림이다 [8, 14]. 자기장이 없는 경우 상전이 온도에서 초전도 상전이에 따른 비열의 급격한 증가가 관측되었다. 임계자기장 이상의 자기장이 인가되었을 경우는 초전도상 이 사라진 보통의 금속의 비열곡선이 관측되었 다. 이 두 곡선의 차를 통해 초전도 상전이 고 유의 비열 곡선을 얻을 수 있고 이를 CaC₆와 SrC₆에 대해 각각 Fig. 3 (c), (d)에 나타내었다.

Fig. 3. Temperature dependence of specific heat (C_p) for CaC₆(a) and SrC₆(b) with and without magnetic fields. The $C_p(T)$ for the superconducting state for CaC₆(c) and SrC₆(d). The red curves are the best fit for the anisotropic superconducting model. The difference between experimental and calculated data is shown in the inset.

초전도상태의 비열의 온도 의존성은 초전도 쌍이 열에너지에 의해 준입자로 여기되면서 결 정되기 때문에 초전도갭의 크기와 모양에 직접 적으로 관련을 가진다. 초전도갭의 온도 의존 성은 아래와 같은 식으로 표현된다 [18].

$$C = 2N\beta k_B \int_k -\frac{\partial f_k}{\partial E_k} \left(E_k^2 + \frac{1}{2}\beta \frac{d\Delta^2}{d\beta} \right)$$
(1)

여기서 N은 페르미 준위에서의 상태밀도이고, $\beta = 1/k_BT$, $E_k = (\xi^2 + \Delta^2)^{1/2}$, $\mathbf{f} = (1 + e^{\beta E})^{-1}$ 이다. 이방 성을 가지는 초전도 갭은 타원형으로 가정하였 고 이때, 모멘텀 공간에서 초전도 갭의 각도의 존성은 식 (2)로 표현된다.

$$\Delta(T,\theta) = \frac{\Delta_{\max}(T)}{\sqrt{1 + \varepsilon \cos^2(\theta)}}$$
(2)

여기서 변수 ε은 이방성의 크기를 나타내게 된 다. 위의 식 (1), (2)를 이용하여 곡선을 fitting 하 여 얻은 곡선은 Fig. 3 (c), (d)의 빨간 색 실선으 로 표시하였다. 그림에서 보듯이 실험과 계산

결과가 잘 일치하는 것을 알 수 있다. 실험결과 와 계산결과의 차이는 5% 이하로 매우 작았다. 모델링으로 얻은 초전도 갭의 크기는 CaC₆ 의 경우는 최대 Δ_{max} = 2.07(5) meV, 최소 Δ_{min} = 1.38(3) meV (ε = 1.3(2)) 이었다. 이는 점접촉분 광법(Point Contact Spectroscopy)으로 얻은 결과 와 잘 일치하였다 [15]. 이는 이론 계산에서 얻 은 초전도 갭의 분포인 1.2 mev ≤ Δ(0) ≤ 2.2 meV 와도 잘 맞는 결과이다 [13]. 이에 반해 SrC₆의 경우는 $\Delta_{\text{max}} = 0.25(1) \text{ meV}, \Delta_{\text{min}} = 0.20(3) \text{ meV}$ ($\epsilon =$ 0.50(4))로 CaC₆에 비해 훨씬 작은 이방성을 가 지는 것으로 나타났다. 이러한 결과는 앞서 Ca 의 임계자기장의 이방성이 SrC₆ 보다 더 크게 관측되는 것과 일치하는 결과이다. 따라서 흑 연층간화합물에서 보이는 초전도의 이방성은 격자구조나 전자구조의 이방성에 의해 결정되 지 않고 다른 요인에 의해 결정된다는 것을 알 수 있다.

107

CaC_9 SrC_9 전자-포논 상호작용에 대한 이론 계산결과에 따르면 초전도성을 유도하는 전자-포논 상호작용은 세가지 다른 포논모드, 즉 삽입된 금속의 평면방향의 포논 모드, 탄소 층의 수직방향의 포논모드, 탄소층의 평면방향 포논모드에 의해 주로 결정된다 [7, 9]. 특히 상 대적으로 낮은 에너지영역에 속하는 금속평면 모드와 탄소층수직모드가 중요하다. 이 흑연층 의 수직포논모드는 층간 전자밴드와 탄소 π전 자밴드의 전자 밴드간 상호작용을 일으키는 주 된 원인이므로 π밴드의 페르미 표면의 초전도 갭 세기를 결정하는 중요한 요인이 된다. 상대 적으로 보다 3차원적인 성질을 가지는 층간 밴 드에 비해 π전자밴드는 2차원 성질을 가지므로 초전도갭의 이방성은 π전자표면의 초전도갭의 크기에 의해 영향을 많이 받게 된다. 앞서 X선 회절실험결과에서 보듯이 Ca에서 Sr으로 삽입 금속의 크기가 증가하면 흑연층간 거리가 늘어 나게 되므로 흑연층의 수직방향 포논모드의 전 자-포논 상호작용의 세기는 금속의 평면방향 포논모드에 비해 훨씬 심하게 감소하게 된다 [14]. 따라서 상대적으로 SrC₆의 경우 π밴드의 초전도갭의 기여가 작게 되고 보다 이방성이 작 은 층간밴드의 초전도갭의 기여가 크게 되므로 전체 초전도성질의 이방성은 낮게 관측되는 것 으로 이해된다. 이러한 연구결과를 통해 흑연층

간화합물의 초전도현상, 특히 초전도갭의 이방 성이 단순히 전자구조의 이방성에 의해 결정되 는 것이 아니라, 전자-포논상호작용의 이방성 에 의해 큰 영향을 받는다는 것을 알 수 있다.

IV. 결론

최근의 각분해 광전자 분광법(angle-resolved photo-emission spectroscopy)을 통해 얻어진 CaC₆의 초전도 갭은 층간밴드에 기인한 페르 미 표면에서는 약 2 meV의 초전도 갭을 가지 는 반면, 탄소 π밴드로 이뤄진 페르미 표면에 서는 0.2 meV의 매우 작은 초전도갭이 관측되 는 것으로 나타났다. 그러나 본 실험에서 얻은 비열 결과에 따르면 초전도 갭의 크기는 최대 2.0 meV, 최소 1.2 meV정도가 되는 것으로 나 타났다. 이러한 실험결과는 각분해 광전자 분 광법에서 구한 결과와는 잘 맞지 않지만, 기존 의 다른 실험 및 이론 결과와 잘 일치한다고 할 수 있다. 따라서 CaC₆의 초전도 형성에는 삽입된 금속에 의한 층간 밴드의 전자-포논 상 호작용 뿐만 아니라 흑연의 π밴드의 전자-포논 상호작용이 중요한 역할을 한다고 할 수 있다. CaC₆와 SrC₆의 임계자기장, 비열 측정결과를 비교하여 초전도갭의 이방성이 CaC₆의 경우 SrC₆에 비해 더 크다는 것을 확인하였다. 이를 통해 초전도갭의 이방성이 전자구조의 이방성 에 의해 결정되는 것이 아니라 전자-포논 상호 작용의 이방성, 특히 흑연의 π밴드와 강하게 상호작용하는 흑연층의 수직방향의 포논모드의 기여 정도에 크게 영향을 받는다는 것을 확인 하였다. 이러한 결과는 상대적으로 초전도 온 도가 낮은 SrC₆의 전자-포논 상호작용의 이방 성을 이해하는 것이 CaC₆의 전자-포논 상호작 용의 이방성을 이해하는데 중요한 비교물질이 될 수 있다는 것을 시사한다고 하겠다.

Acknowledgments

This work was supported by the National Research Foundation through Basic research program (2009-0076700) and by the POSTECH Basic Science Research Institute Grant.

References

- For a review, M. S. Dresselhaus and G. Dresselhaus, "Intercalation compounds of graphite", Adv. Phys. 51, 1 (2002).
- [2] N. B. Hannay *et al.*, "Superconductivity in Graphitic Compounds", Phys. Rev. Lett. **14**, 225 (1965).
- [3] T. E. Weller, *et al.*, "Superconductivity in the intercalated graphite compounds C₆Yb and C₆Ca", Nat. Phys. **1**, 39 (2005).
- [4] G. Csanyi, *et al.*, "The role of the interlayer state in the electronic structure of superconducting graphite intercalated compounds", Nat. Phys. 1, 42 (2005).
- [5] N. Emery, *et al.*, "Superconductivity of Bulk CaC₆", Phys. Rev. Lett. **95**, 087003 (2005).
- [6] I. I. Mazin, "Intercalant-Driven Superconductivity in YbC₆ and CaC₆", Phys. Rev. Lett. 95, 227001 (2005).
- [7] M. Calandra and F. Mauri, "Theoretical Explanation of Superconductivity in C₆Ca", Phys. Rev. Lett. 95, 237002 (2005).
- [8] J. S. Kim *et al.*, "Specific Heat of the Ca-Intercalated Graphite Superconductor CaC₆", Phys. Rev. Lett. 96, 217002 (2006).
- [9] J. S. Kim, *et al.*, "Effect of pressure on superconducting Ca-intercalated graphite CaC₆", Phys. Rev. B. 74, 214513 (2006).
- [10] G. Lamura, *et al.*, "Experimental Evidence of s-Wave Superconductivity in Bulk CaC₆", Phys. Rev. Lett. 96, 107008 (2006).
- [11] N. Bergeal, *et al.*, "Scanning Tunneling Spectroscopy on the Novel Superconductor CaC₆", Phys. Rev. Lett. 97, 077003 (2006).
- [12] A. Gauzzi *et al.*, "Enhancement of Superconductivity and Evidence of Structural Instability in Intercalated Graphite CaC₆ under High Pressure", Phys. Rev. Lett. 98, 067002 (2007).
- [13] A. Sanna, *et al.*, "Anisotropic gap of superconducting CaC₆: A first-principles density functional calculation", Phys. Rev. B 75, 020511(R) (2007).
- [14] J. S. Kim, et al., "Superconductivity in Heavy Alkaline-Earth Intercalated Graphites", Phys. Rev.

Lett. 99, 027001 (2007).

- [15] R.S. Gonnelli, *et al.*, "Evidence for gap anisotropy in CaC₆ from directional point-contact spectroscopy", Phys. Rev. Lett. **100**, 207004 (2008).
- [16] K. Sugawara *et al.*, "Fermi-surface-dependent superconducting gap in C_6Ca ", Nat. Phys. **5**, 40 (2009).
- [17] N. R. Werthammer, E. Helfand, and P. C. Hohenberg, "Temperature and Purity Dependence of the Superconducting Critical Field, H_{c2}. III. Electron Spin and Spin-Orbit Effects", Phys. Rev. 147, 295 (1966).
- [18] M. Thinkham, "Introduction to Superconductivity", 2ed, McGraw-Hill (1996).