Progress in $MgB_2$ Superconductor Wires and Tapes

  • Kim, Jung-Ho (Institute for Superconducting and Electronic Materials, University of Wollongong) ;
  • Kumakura, Hiroaki (Superconducting Materials Science, National Institute for Materials Science) ;
  • Rindflesich, Matthew (Hyper Tech Research, Inc.) ;
  • Dou, Shi Xue (Institute for Superconducting and Electronic Materials, University of Wollongong) ;
  • Hwang, Soo-Min (School of Advanced Materials Science and Engineering, Sungkyunkwan University) ;
  • Joo, Jin-Ho (School of Advanced Materials Science and Engineering, Sungkyunkwan University)
  • 투고 : 2011.02.09
  • 심사 : 2011.03.28
  • 발행 : 2011.04.30

초록

We report on the progress that has been made in developing $MgB_2$ superconducting wires and tapes for commercialization and research efforts. A number of techniques have been developed to overcome the obstacle posed by the poor critical current density ($J_c$) of pristine $MgB_2$. Chemical doping has proved to be the effective way to modify and enhance the superconducting properties, such as the $J_c$ and the irreversibility field ($B_{irr}$). More than 100 different types of dopants have been investigated over the past 8 years. Among these, the most effective dopants have been identified to be SiC and malic acid ($C_4H_6O_5$). The best results, viz. a $B_{irr}$ of 22 T and $J_c$ of $30,000\;A{\cdot}cm^{-2}$ at 4.2 K and 10 T, were reported for malic acid doped $MgB_2$ wires, which matched the benchmark performance of commercial low temperature superconductor wires. In this work, we discuss the progress made in $MgB_2$ conductors over the past few years at the University of Wollongong, Hyper Tech Research, Inc., and Ohio State University.

키워드

참고문헌

  1. E. W. Collings, M. D. Sumption, M. Bhatia, M. A. Susner, and S. D. Bohnenstiehl, "Prospects for improving the intrinsic and extrinsic properties of magnesium diboride superconducting strands", Supercond. Sci. Technol., 21(10), 103001 (2008). https://doi.org/10.1088/0953-2048/21/10/103001
  2. S. Oh, J. H. Kim, K. Cho, C. Lee, C. J. Kim, S. X. Dou, M. Rindfleisch, M. Tomsic, and J. H. Ahn, "A comparative study on field, temperature, and strain dependence of the critical current for doped and undoped MgB2 wires based on the percolation model", J. Appl. Phys., 106(6), 063912 (2009). https://doi.org/10.1063/1.3224862
  3. M. A. Susner, M. D. Sumption, M. Bhatia, X. Peng, M. J. Tomsic, M. A. Rindflesich, and E. W. Collings, "Influence of Mg/B ratio and SiC doping on microstructure and high field transport Jc in MgB2 strands", Physica C, 456(1-2), 180 (2007). https://doi.org/10.1016/j.physc.2007.02.005
  4. M. Tomsic, M. Rindfleisch, J. J. Yue, K. McFadden, D. Doll, J. Phillips, M. D. SumptionD, M. Bhatia, S. Bohnenstiehl, and E. W. Collings, "Development of magnesium diboride ($MgB_{2}$) wires and magnets using in situ strand fabrication method", Physica C, 456(1-2), 203 (2007). https://doi.org/10.1016/j.physc.2007.01.009
  5. M. S. A. Hossain, C. Senatore, R. Flukiger, M. A. Rindfleisch, M. J. Tomsic, J. H. Kim, and S. X. Dou, "The enhanced $J_{c}(B)$ and Birr of in situ $MgB_{2}$ wires and tapes alloyed with $C_{4}H_{6}O_{5}$ (malic acid) after cold high pressure densification", Supercond. Sci. Technol., 22(9), 095004 (2009). https://doi.org/10.1088/0953-2048/22/9/095004
  6. J. H. Kim, S. X. Dou, A. Matsumoto, S. Choi, T. Kiyoshi, and H. Kumakura, "Correlation between critical current density and n-value in $MgB_{2}$/Nb/Monel superconductor wires", Physica C, 470(20), 1207 (2010). https://doi.org/10.1016/j.physc.2010.05.075
  7. M. Rindfleisch, private communication.
  8. W. J. Yao, J. Bascunan, W. S. Kim, S. Hahn, H. Lee, and Y. Iwasa, "A solid nitrogen cooled $MgB_{2}$"Demonstration" coil for MRI applications", IEEE Trans. Appl. Supercond., 18(2), 912 (2008). https://doi.org/10.1109/TASC.2008.920836
  9. M. Takahashi, K. Tanaka, M. Okada, H. Kitaguchi, and H. Kumakura, "Relaxation of a trapped magnetic field in a 100 m long class $MgB_{2}$ solenoid coil in persistent current mode operation", Supercond. Sci. Technol., 18(12), S373 (2005). https://doi.org/10.1088/0953-2048/18/12/025
  10. W. J. Yao, J. Bascunan, S. Y. Hahn, and Y. Iwasa, "A superconducting joint technique for $MgB_{2}$ round wires", IEEE Trans. Appl. Supercond., 19(3), 2261 (2009). https://doi.org/10.1109/TASC.2009.2019063
  11. G. Giunchi, L. Saglietti, G. Ripamonti, A. F. Albisetti, E. Bassani, and E. Perini, "Superconducting joints between $MgB_{2}$ wires and bulks", IEEE Trans. Appl. Supercond., 20(3), 1524 (2010). https://doi.org/10.1109/TASC.2010.2040260
  12. Z. Hong, L. Ye, M. Majoros, A. M. Campbell, and T.A. Coombs, "Numerical estimation of AC loss in $MgB_{2}$ wires in self-field condition", J. Supercond. Nov. Magn., 21, 205 (2008). https://doi.org/10.1007/s10948-008-0319-y
  13. X. Xu, J. H. Kim, S. X. Dou, S. Choi, J. H. Lee, H. W. Park, M. Rindfleisch, and M. Tomsic, "A correlation between transport current density and grain connectivity in $MgB_{2}$/Fe wire made from ball-milled boron", J. Appl. Phys., 105(10), 103913 (2009). https://doi.org/10.1063/1.3129314