DOI QR코드

DOI QR Code

수압파쇄 균열폐쇄압력 산정을 위한 수치해석 연구

Numerical Approach for Determination of Shut-in Pressure in Hydrofracturing Test

  • 최성웅 (강원대학교 공과대학 에너지.자원공학과)
  • 투고 : 2011.04.13
  • 심사 : 2011.04.18
  • 발행 : 2011.04.30

초록

수직 시추공에 대한 일반적인 수압파쇄시험으로부터 구해지는 균열폐쇄압력은 암반의 최소수평주응력을 직접 나타내기 때문에 현지암반의 응력분포양상을 해석하는데 있어서 매우 중요한 요소이다. 그러나 수압파쇄균열의 거동과 현지암반의 응력분포양상의 관계로 인하여 대부분의 경우 이 균열폐쇄압력은 수압파쇄 압력이력곡선 상에서 애매모호한 값으로 나타난다. 본 연구에서는 수압파쇄시험으로부터 균열폐쇄압력을 산정하기 위하여 여러 연구자들에 의해 제안된 기법들의 특성을 비교해 보고자 수치해석을 실시하였다. 즉, 유체의 가압에 의한 암반 내 균열의 발생이라는 수압파쇄의 특성을 모사하기 위하여 H-M couple 해석을 적용하였으며, 또한 수치해석 모델의 형상학적 특성에 따른 균열의 전파양상을 검토하기 위해 4가지 서로 다른 형태의 요소망을 구축하여 해석을 실시하였다. 각각의 요소망에 대한 수치해석 결과, 그래픽 방법이 통계적 방법에 비해 상대적으로 낮은 수준의 균열폐쇄압력을 보였으며, 따라서 시험공 주변에서의 응력 이상대의 존재 및 복잡한 메커니즘을 수반하는 수압파쇄균열의 발생양상을 감안할 때 수압파쇄시험에 의한 균열폐쇄압력의 산정시 특별한 주의가 요구된다.

The shut-in pressure calculated in common hydrofracturing test for vertical borehole equals generally to the minimum horizontal principal stress, so it should be considered as an essential parameter for determining the in-situ stress regime around the rock mass. It shows usually an ambiguous value in pressure-time history curves, however, because of the relationship between the behavior of hydraulic fractures and the condition of remote stress regime. In this study, a series of numerical analyses have been carried out to compare several methods for determining the shut-in pressure during hydrofracturing. The hydraulic-mechanical coupling has been applied to numerical analysis for simulating the fracture propagation by hydraulic pressure, and the different discontinuity geometry has been considered in numerical models to examine the effect of numerical element shape on fracture propagation pattern. From the numerical simulations with the four different discontinuity geometries, it was revealed that the shut-in pressure obtained from graphical methods rather than statistical method was relatively small. Consequently a care should be taken in selecting a method for determining the shut-in pressure when a stress anomaly around borehole and a fracture propagation with complicate mechanism are considered.

키워드

참고문헌

  1. Aamodt, L. and Kuriyagawa, M., 1983, Measurement of instantaneous shut-in pressure in crystalline rock, Proc. Hydraulic Fracturing Stress Measurements, Monterey, National Academy Press, Washington, DC, 139-142.
  2. Aggson, J.R. and Kim, K., 1987, Analysis of hydraulic fracturing pressure history: a comparison of five methods used to identify shut-in pressure, Int. J. Rock Mech. Min. Sci. & Geomech. Abstr., 24, 75-80.
  3. Amadei, B. and Stephansson, O., 1997, Rock stress and its measurement, Chapman & Hall, pp. 121-199.
  4. Chen, S.G. and Zhao, J., 1998, A study of UDEC modelling for blast wave propagation in jointed rock masses, Int. J. Rock Mech. Min. Sci. & Geomech. Abstr., 35, 93-99. https://doi.org/10.1016/S0148-9062(97)00322-7
  5. Choi, S.O. and Lee, H.K, 1995, The analysis of fracture propagation in hydraulic fracturing using artificial slot model, Tunnel & Underground, J. of Korean Society for Rock Mechanics, Vol. 5, 251-265.
  6. Cundall, P.A., 1971, A computer model for simulating progressive large scale movements in blocky rock systems, Pros. Symp. Int. Soc. Rock Mech., Nancy, France, Vol. 1, paper II-8.
  7. Doe, T.W. et al., 1983, Determination of the state of stress at the Stripa Mine, Sweden, Proc. Hydraulic Fracturing Stress Measurements, Monterey, National Academy Press, Washington, DC, 119-129.
  8. Goodman, R.E., 1976, Methods of geological engineering in discontinuous rocks, West publishing, St. Paul.
  9. Gronseth, J.M. and Kry, P.R., 1983, Instantaneous shut-in pressure and its relationship to the minimum in-situ stress, Proc. Hydraulic Fracturing Stress Measurements, Monterey, National Academy Press, Washing-ton, DC, 55-60.
  10. Haimson, B.C., 1968, Hydraulic fracturing in porous and nonporous rock and its potential for determining in situ stresses at great depth, PhD Thesis, Univ. of Minnesota, 234p.
  11. Hubbert, K.M. and Willis, D.G., 1957, Mechanics of hydraulic fracturing, Petrol. Trans. AIME, T.P. 4597, 210, 153-166.
  12. Itasca Consulting Group Company, 1993, Universal Distinct Element Code (UDEC) Version 3.0.
  13. Jaeger, C. and Cook, N.G., 1979, Fundamentals of rock mechanics, Chapman and Hall, London.
  14. Kim, K. and Franklin, J.A., 1987, Suggested methods for rock stress determination, Int. J. Rock Mech. Min. Sci. & Geomech. Abstr., 24, 53-73.
  15. Lee, M.Y. and Haimson, B.C., 1989, Statistical evaluation of hydraulic fracturing stress measurement parameters, Int. J. Rock Mech. Min. Sci. & Geomech. Abstr., 26, 447-456. https://doi.org/10.1016/0148-9062(89)91420-4
  16. Rummel, F., 1987, Fracture mechanics approach to hydraulic fracturing stress measurements, in Atkinson, B. K., eds., Fracture Mechanics of Rocks, Academic Press, London, pp. 217-239.
  17. Tunbridge, L.W., 1989, Interpretation of the shut-in pressure from the rate of pressure decay, Int. J. Rock Mech. Min. Sci. & Geomech. Abstr., 26, 457-459. https://doi.org/10.1016/0148-9062(89)91421-6
  18. Witherspoon, P.A., Wang, J.S.Y., Iwai, K., Gale, J.E., 1980, Validity of cubic law for fluid flow in a deformable rock fracture, Water Resour. Res. 16, 1016-1024. https://doi.org/10.1029/WR016i006p01016
  19. Zhang, X., Sanderson, D.J., Harkness, R.M., Last, N.C., 1996, Evaluation of the 2-D permeability tensor for fractured rock masses, Int. J. Mech. Min. Sci. & Geomech. Abstr., 33, 17-37. https://doi.org/10.1016/0148-9062(95)00042-9
  20. Zhang, X., Last, N., Powrie, W., Harkness, R., 1999, Numerical modelling of wellbore behaviour in fractured rock masses, J. Pet. Sci. & Eng., 23, 95-115. https://doi.org/10.1016/S0920-4105(99)00010-8
  21. Zoback, M.D. and Haimson, B.C., 1982, Status of hydraulic fracturing method for in situ stress measurements, Proc. 23rd US Symp. Rock Mech., Berkeley, SME/AIME, 143-156.