DOI QR코드

DOI QR Code

지진 및 지진해일파 작용하의 해안안벽의 안정성평가

Evaluation of the Stability of Quay Wall under the Earthquake and Tsunami

  • 이광호 (나고야대학 대학원 공학연구과 사회기반공학) ;
  • 하선욱 (한국해양대학교 토목환경공학과) ;
  • 이귀섭 (한국해양대학교 토목환경공학과) ;
  • 김도섭 (한국해양대학교 토목공학과) ;
  • 김태형 (한국해양대학교 토목공학과)
  • 투고 : 2010.08.02
  • 심사 : 2011.02.24
  • 발행 : 2011.03.31

초록

해안안벽에 작용하는 지진과 지진해일파의 영향에 대하여 한계평형상태해석법을 적용하여 해안안벽의 활동 및 전도에 대한 안정성평가를 실시하였다. 또한, 지진해일파력에 대하여 기존의 기존식과 3차원혼상류해석법으로부터 추정된 지진해일파력을 적용하여 해안안벽의 안정성평가를 비교 분석하였다. 또한, 지진해일파고, 수직지진가속도계수, 흙의 내부마찰각, 벽면마찰각, 간극수압비 등의 변화에 따른 해안안벽의 안전율변화를 제시하였고, 해안안벽의 안정성에 대하여 지진과 지진해일파를 고려하지 않은 경우와도 비교하였다. 이로부터 지진해일파력에 대한 수치해석 결과는 기존식을 적용한 결과와 유사한 것으로 나타났으며, 지진과 지진해일파가 동시에 작용하는 경우 수동상태에서 해안안벽의 안정성은 현저히 감소하고 있으며, 주동상태에서 지진해일파는 저항력으로 작용하여 해안안벽의 안정성을 증가시키는 것으로 나타났다.

The present study analyzes the stability of waterfront quay wall under the combined action of earthquake and tsunami. Adopting the limit equilibrium method, the stability of waterfront quay wall is checked for both the sliding and overturning. Forces due to tsunami are compared with the proposed formula and the 3-D one-field Model for immiscible TWO-Phase flows (TWOPM-3D). Variations of the stability of wall are also proposed by the parametric study including tsunami water height, horizontal seismic acceleration coefficient, internal friction angle of soil, friction angle between the wall and the soil and the pore water pressure ratio. The present study about the stability of wall is also compared with the case when earthquake and tsunami are not considered. As a result, the result of numerical analysis about the tsunami force is similar to that of proposed formula. When earthquake and tsunami are simultaneously considered, the stability of wall in passive case significantly decreases and tsunami forces in active case are affected as a resistance force on the wall and so the stability of wall increases.

키워드

참고문헌

  1. 국립방재연구소 (1998), 동해안에서의 쯔나미 위험도 평가, 국립 방재연구소 연구보고서 NIDP-98-06.
  2. 이광호, 이상기, 신동훈, 김도삼 (2008), 복수연직주상구조물에 작용하는 비선형파력과 구조물에 의한 비선형파랑변형의 3차원 해석, 한국해안해양공학회논문집, 한국해안해양공학회, 제20권, 제1호, pp.1-13.
  3. 해양수산부 (2005), 항만 및 어항설계기준, 해양수산부 설계기준.
  4. Akiyama, M. and Aritomi, M. (2002), Advanced numerical analysis of two-phase flow dynamics multi-dimensional flow analysis., Corona Publishing Co., LTD. Tokyo, Japan.
  5. Amsden, A.A. and Harlow, F.H. (1970), The SMAC method : a numerical technique for calculating incompressible fluid flow., Los Alamos Scientific Laboratory Report LA-4370, Los Alaomos, N.M.
  6. Asakura, R., Iwase, K., Ikeya, T., Takao, M., Kaneto, T., Fujii, N. and Omori, M. (2000), An experimental study on wave force acting on on-shore structures due to overflowing tsunamis., Proc. of Coastal Engrg., JSCE, Vol.47, pp.911-915.
  7. Brorsen, M. and Larsen, J. (1987), Source generation of nonlinear gravity waves with boundary integral equation method., Coastal Engrg., Vol.11, pp.93-113. https://doi.org/10.1016/0378-3839(87)90001-9
  8. Chakrabarti, S., Husak, A.D., Christiano, P.P., Troxell, D.E. (1978), Development of seismic design criteria for category I cofferdams., Nuclear Engineering and Design., Vol.45, pp.277-283. https://doi.org/10.1016/0029-5493(78)90123-1
  9. Choudhury, D., Ahmad, S.M. (2007a), Design of waterfront retaining wall for the passive case under earthquake and tsunami., Applied Ocean Reasearch., Vol.29, pp.37-44. https://doi.org/10.1016/j.apor.2007.08.001
  10. Choudhury, D., Ahmad, S.M. (2007b), Stability of waterfront retaining wall subjected to pseudo-static earthquake forces., Ocean Engrg., Vol.34, pp.1947-1954. https://doi.org/10.1016/j.oceaneng.2007.03.005
  11. CRATER. (2006), Coastal risk analysis of tsunamis and environmental remediation., Italian Ministry for the Environment and the Territory (IMET).
  12. Ebeling, R.M., Morrison, E.E. Jr. (1992), The seismic design of waterfront retaining structures., US Army Technical Report ITL- 92-11.
  13. Fenton, J. (1972), A ninth-order solution for the solitary wave., J. of Fluid Mech., Vol.53, No.2, pp.257-271. https://doi.org/10.1017/S002211207200014X
  14. Grimshaw, R. (1971), The solitary wave in water of variable depth: Part 2., J. Fluid Mech., Vol.46, pp.611-622. https://doi.org/10.1017/S0022112071000739
  15. Hirt, C. W. and Nichols, B.D. (1981), Volume of fluid (VOF) method for the dynamics of free boundaries., J. of Comput. Phys., Vol.39, pp.201-225. https://doi.org/10.1016/0021-9991(81)90145-5
  16. Kim, S.R., Jang I.S., Chung, C.K., Kim, M.M. (2005), Evaluation of seismic displacements of quay walls., Soil dynamics and earthquake Engrg., Vol.25, pp.451-459.
  17. Kramer, S.L. (1996), Geotechnical earthquake engineering., New Jersey: Pearson Education Inc.
  18. Mononobe, N, Matsuo, H. (1929), On the determination of earth pressures during earthquakes., In: Proc. of the world engineering congress., pp.177-185.
  19. Nozu, A., Ichii, K., Sugano, T. (2004), Seismic design of port structures., J. of Japan Association for Earthquake Engrg., Vol. 4(3-special issue), pp.195-208. https://doi.org/10.5610/jaee.4.3_195
  20. Okabe, S. (1924), General theory of earth pressure., J of the Japanese Society of Civil Engineers., Vol.12, No.1.
  21. Satake, K., and Tanioka, Y. (1995), Tsunami generation of the 1993 Hokkaido Nansei-Oki earthquake., Pure and Appl. Geophysics, 144(3/4), pp.804-821.
  22. Shuto, N., and Matsutomi, H. (1995), Field survey of the 1993 Hokkaido Nansei-Oki earthquake tsunami., Pure and Appl. Geophysics, 144(3/4), pp.649-663. https://doi.org/10.1007/BF00874388
  23. Smagorinsky, J. (1963), General circulation experiments with the primitive equations., Mon, Weath. Rev., Vol.91, No.3, pp.99-164. https://doi.org/10.1175/1520-0493(1963)091<0099:GCEWTP>2.3.CO;2
  24. Yeh, H. (2006), Maximum fluid forces in the tsunami runup zone., J. of Waterway, Port, Coastal, and Ocean Engrg, ASCE, Vol.132, No.6, pp.496-500. https://doi.org/10.1061/(ASCE)0733-950X(2006)132:6(496)
  25. Westergaard, H.M. (1933), Water pressures on dams during earthquakes Transactions., ASCE., Vol.98, pp.418-433.