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Abstract
Most statistical methods for finding interesting genes are 
focusing on the summary values with large fold-changes 
or large variations. Very few methods consider the 
probe level data. We developed a new measure to de-
tect reliability that incorporates the probe level data. 
This reliability measure is useful for exploring the micro-
array data without ignoring the probe level data. It is 
easy to calculate, and it can be used for all the other 
statistical methods as a good guideline to find real dif-
ferentially expressed genes. Instead of filtering out 
genes before the analysis, we use whole genes in the 
analysis and make decisions with new reliability 
measures. 
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Introduction
In Affymetrix microarrays, the expression of each gene 
is measured by comparing the hybridization of the sam-
ple mRNA to a set of probes. A probe is composed of 
11-20 pairs of oligonucleotides, each 25 base pairs in 
length. The first type of probe in each pair is known as 
a perfect match (PM), which is taken from the target 
gene sequence. The second type is known as a mis-
match (MM), created by changing the middle (13th) 
base of the PM sequence. The purpose of measuring 
MM values is to control for nonspecific binding of 
mRNA, but the actual use of MM values has become 
controversial (Lazaridis et al., 2001).
  A gene expression experiment is usually conducted 
with multiple arrays, also called chips, to compare gene 
expression across different treatments (genotype, co-

factor, replicate). Each chip is prepared by labeling it 
with a fluorescent dye and hybridizing it to an array. 
The arrays are scanned into images, which are numeri-
cally processed to obtain fluorescence intensity values 
for each PM and MM sequence. Gene expression mi-
croarrays are powerful bioinformatic tools, but the varia-
bility arising throughout the measurement process can 
obscure the biological signals of interest. Quantification 
of the measurement error helps to extract significant bi-
ological signals.
  The chip-to-chip variability is controlled by normal-
ization, which yields the same distribution of PM and 
MM values for each chip. (See Bolstad et al., (2003) for 
a comparison of methods.) After normalization, the val-
ues from a probe set are summarized into a single gene 
expression measure, quantifying the gene activity. 
Common approaches are the average difference, the 
model-based expression index (Li and Wong, 2001), the 
MAS 5.0 algorithm from Affymetrix, and the robust mul-
ti-chip average (rma) (Irizarry et al., 2003). Fig. 1 shows 
profile plots for two genes, 265670_s_a and 249093_at, 
each having 11 PM values. The rma summary ex-
pression value is a solid line, and the PM values are 
dashed lines. The horizontal axis shows the numbers for 
the eight chips, organized into three genotypes (A, B, C) 
and their replicates, and the vertical axis shows the 
log-scale expression values. The gene 265670_s_a has 
much less variability in PM value than the gene 
249093_at, and thus, it is considered to have a more re-
liable measure of gene expression.
  Commonly used models for finding differentially ex-
pressed genes are ANOVA (Churchill, 2004) and the 
HLM for one-way ANOVA (Chu et al., 2002). These 
models compare the expression values across ex-
perimental treatments for each gene. Genes that have 
differential expression on different treatments, relative to 
its variance over all chips, will have a low p-value. Both 
of these methods use the summary expression value. In 
practice, with our data we have found that they also 
yield somewhat unsatisfactory results. Many genes on 
the resulting lists have relatively flat, uninteresting pro-
files, and yet, many genes filtered from the list have rel-
atively structured, interesting profiles. This has moti-
vated us to consider using the PM value in addition to 
the summary expression value to evaluate the sig-
nificance of genes. 
  Table 1 and Table 2 show ANOVA results for two 
sample genes, 265670_s_at and 249093_at. The p-val-
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Fig. 1. The expression values of gene 265670_s_at and gene 249093_at. The x-axis 

represents the chips (arrays), and the y-axis represents the expression values. The first

three chips are the replicates of A, and the area is shaded. The next two chips are the

replicates of B, and the others are the replicates of C; this area is also shaded. The 

solid lines in each treatment represent the RMA summary values, and all values in the 

same treatment are connected. The dotted lines represent the normalized PM values.

Table 1. ANOVA Table for 265670_s_at

Source df MS F p-value

Treatment 2 4.9763 922.9 3.79＊10-7

Error 5 0.0054  　

Table 2. ANOVA Table for 249093_at

Source    df MS      F     p-value  

Treatment 2 0.1653 2053.2 5.16＊10-8

Error        5 0.0001  

ues for both genes are very small, less than 10-7, sug-
gesting that both genes have significantly different ex-
pression between treatments. A closer look, however, is 
revealing. The gene 265670_s_at has a very large mean 
square treatment effect, 4.9763, and a small mean 
square error, resulting in a high F value and low 
p-value. In contrast, the gene 249093_at has a small 
mean square treatment effect, 0.1653, and a very small 
mean square error effect, 0.0001, which also yields a 
high F value and low p-value. The profiles of these two 
genes are also plotted in Fig. 1. Although both genes 
are significant according to the ANOVA table, the genes 
are not alike. One gene has very flat profiles, which 
makes it less interesting than the other gene.
  The two genes have another difference. The profiles 
of the PM values are also shown in Fig. 1. The gene 
249093_at has a lot more variability in PM values than 
265670_s_at. The variability in the PM value should be 
incorporated into a model for detecting significant ex-
pression differences. 
  Chu et al. (2002) proposed using the HLM for one-way 
ANOVA, which is a classical linear mixed model, in-
corporating probe-level data, for modeling expression. 
To fit the model, they use standard maximum likelihood 

(ML) methods using the Proc Mixed procedure in SAS 
and apply it for each gene. They also estimate the sum-
mary values from this model and use them for further 
analysis, like clustering. However, ML fitting for the 
model might be too sensitive to outliers. Fig. 2 shows 
the difference between RMA summary values and sum-
mary values from the HLM model for two genes, 
265670_s_at (■) and 249093_at (○). For 265670_s_at, 
the estimated values from the HLM model are similar to 
the RMA summary values. However, the gene 
249093_at, which has more varied PM values, shows 
quite different estimated values from the HLM model 
compared to the RMA summary values. This is due to 
the variation in the PM values.
  In this paper, we define the reliability of a summary 
gene expression value using the variation of probe-level 
data and show how to use this reliability measure with 
models for gene expression analysis and associated 
variance modifications, such as SAM (Tusher et al., 
2001) and eBayes (Smyth, 2004). Reliability quantifies 
the uncertainty in gene expression measurements that 
can assist in filtering out genes with too much variability 
in favor of genes that have consistent measurements 
and significant expression.
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Fig. 2. The black squares correspond to the gene 

265670_s_at, and the empty circles correspond to the gene 

249093_at. The x-axis represents the expression values esti-

mated from the HLM, and the y-axis represents the RMA 

expression values. The dashed line is y=x. For 265670_s_at,

the estimated values from the HLM are similar to the RMA 

summary values. However, the gene 249093_at shows quite 

different estimated values from the mixed model compared 

to the RMA summary values.

Methods 
We start from the 2-level hierarchical linear model (HLM) 
for one gene. Let be Plk the log2-transformed probe lev-
el intensity value of the l-th chip and the k-th oligonu-
cleotide probe, l =1, 2, …, L, and k =1, 2,… , K (usually 
between 11-20). The chip-to-chip variability is usually 
controlled by normalizing the log2-transformed probe in-
tensity values using the quantile method. Then, the 
probe level model is 

lkllk MP γ+= (1)

  where Ml represents the summary expression value of 
the l-th chip and γlk is the normally distributed random 
error with a mean of 0 and a probe level variance σ2. 
We assume the common probe level variance for each 
chip. Because we do not know the true value for Ml, we 
set the level-2 (summary value level) model as follows: 

llM εμ += (2) 

  where μ is the overall mean, and εl is the random 
effect associated with the l-th chip, assumed to be nor-
mally distributed with a mean of 0 and a variance τ2. 
We assume that εl and γlk are independent. 

  Combining (1) and (2) yields the model 

lkllkPM γεμ ++= (3) 

  which is a one-way ANOVA model with a random ef-
fect, where μ is the overall mean, εl is a summary val-
ue level random effect, and γlk is a probe level random 
effect. Then, the variance of log2 probe intensities is

22)()( στγε +=+= lkllm VarPVar (4)

  The σ2 parameter represents the probe level varia-
bility, and τ2 captures the variability of the summary 
values. Most models for finding significant genes start 
from the summary value level model, using the summary 
values and ignoring the probe level variability. Our inter-
est focuses not only on τ2 but also on σ2. If σ2 is 
large relative to τ2, the summary values of the chips 
might be less reliable.
  In the 2-level HLM, the reliability ρ of the estimated 

value lM̂  is defined as follows (Raudenbush and Bryk, 
2002):
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  where τ2 represents the variation of the summary 
value Ml, and σ2 represents the variation of log2 probe 
intensity values PMlm. Therefore, this reliability can be 
written as:
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  This measure is defined from the structure of HLM 
and represents the reliability of the summary expression 
values of the specific gene. This population version of 
the reliability is usually estimated by fitting the hier-
archical model, where a simple mean of the log2-trans-
formed probe intensity values is used as the summary 
value. However, a simple mean of the log2 probe in-
tensities is rarely used for the summary value in micro-
array data analysis. There are a lot of methods to calcu-
late summary values in robust way (Bolstad et al., 
2003), including RMA. Recently, (Millenaar et al., 2003) 
compared several calculation methods for summary 
values. They concluded that the user needs to try sev-
eral different methods. However, it is usually not easy.
  We extend the approach by estimating reliability for 
any type of summary value method. Let yl be a sum-
mary value of the l-th chip, and Pl1, Pl2, …, PlK are 
probe-level data. yl is calculated from Pl1, Pl2, …, PlK 
using one of the summarization methods. Then, our new 
reliability measure is defined as follows:
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Fig. 3. Ratio of probe variance to summary expression var-

iance plotted against reliability, ρ*. Reliability larger than 

0.92 corresponds to a probe variance less than or equal to 

the summary expression variance.

Table 3. This table is the top 15 genes that have the smallest p-value of the ANOVA test. The numbers under each method 

name is the rank. A/C and B/C represent the fold-changes between two treatments

Affy ID Locus ID GO.Function Rel.* eBayes SAM ANOVA HLM A/C B/C

246785_at AT5G27380 Molecular function unknown 0.846 129 26 1 985 -0.203 -1.579

262128_at AT1G52690 0.993 1 1 2 2 4.415 0.827

259768_at AT1G29390 0.930 33 12 3 277 -1.694 -2.119

265575_at AT2G14260 Aminopeptidase activity; catalytic 

 activity; hydrolase activity;

0.624 1162 307 4 5567 0.150 -0.750

262571_at AT1G15430 0.852 611 152 5 1503 0.810 -0.208

262313_at AT1G70900 0.915 133 41 6 333 -1.453 -1.176

256648_at AT3G13580 Structural constituent of ribosome; 

 transcription regulator activity;

0.897 111 44 7 409 1.497 0.216

251428_at AT3G60140 Hydrolase activity, hydrolyzing 

 O-glycosyl compounds;

0.987 2 2 8 3 4.198 2.620

258347_at AT3G17520 0.846 757 224 9 1032 0.883 0.070

266897_at AT2G45820 DNA binding; 0.921 97 38 10 465 0.398 -1.418

{bf 262605_at} AT1G15170 Antiporter activity; drug transporter 

 activity; transporter activity;

0.166 6977 2814 11 14802 -0.364 -0.274

255046_at AT4G09650 Hydrogen-transporting ATP synthase 

 activity, rotational mechanism;

0.927 12 7 12 202 -1.605 -2.917

251714_at AT3G56370 ATP binding; kinase activity; protein 

 serine/threonine kinase activity;

0.810 1158 339 13 1353 -0.678 -0.841

261279_at AT1G05850 Chitinase activity 0.958 30 15 14 64 -0.519 -2.455

253606_at AT4G30530 Catalytic activity 0.928 24 14 15 204 -1.237 -2.583

  This new reliability measure can be calculated easily 
with several different summary expression values. If 
RMA is the summary estimation method, yl is a sum-
mary value from RMA (Irizarry et al., 2003) and Pl1, Pl2, 
…, PlK are log2 PM values. If MBEI (Li and Wong, 2001) 
values are used, yl is a summary value from the dchip 
method and Pl1, Pl2, …, PlK are log2 PM - log2 MM 
values.
  This new reliability statistic, ρ*, is easy to calculate, 
and it can be applied for a variety of summary value 
methods. The population version of reliability ρ in the 
equation (6) is only for the 2-level HLM model and can 

only be used for lM̂ . On the other hand, the reliability 
statistic ρ* can be used for diagnostics in models with 
various summary values. Therefore, it is possible to 
compare various methods to calculate summary values 
using this measure.
  There is no general rule to decide whether the reli-
ability is high or not. We suggest a guideline that helps 
in decision-making. The definition of ρ* can be re-stat-
ed as follows: 

*

*)1(
)var(
)var(

ρ
ρ−= K

valuessummary
datalevelprobe

 
  

(8)

where K is a constant. Fig. 3 shows the relationship be-
tween ρ* and this ratio of variances. If the ratio is less 
than or equal to 1, the reliability ρ* will be larger than 
0.92. If we allow this ratio up to 2, ρ* should be larger 

than 0.85. Therefore, if the ratio of variances between 
probe-level data and summary values is less than or 
equal to 1, we expect to have a reliability greater than 
0.92. If the reliability is less than 0.92, in this case, we 
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Table 4. This table is the top 15 genes that have smallest p-value of the eBayes method. The numbers under each method 

name is the rank. A/C and B/C represent the fold-changes between two treatments

Affy ID Locus ID GO.Function Rel.* eBayes SAM ANOVA HLM A/C B/C

262128_at AT1G52690 Molecular function unknown 0.993  1  1  2  2 4.415 0.827

251428_at AT3G60140 Hydrolase activity, hydrolyzing O-glycosyl 

 compounds

0.987  2  2  8  3 4.198 2.620

254098_at AT4G25100 Iron superoxide dismutase activity 0.995  3  3 27  1 -0.774 -4.819

264514_at AT1G09500 Alcohol dehydrogenase activity; cinnamyl-alcohol 

 dehydrogenase activity

0.970  4  4 19 17 3.515 1.609

261309_at AT1G48600 S-adenosylmethionine-dependent methyltransfer-

ase activity

0.977  5  6 28 19 -2.781 -3.808

262047_at AT1G80160 lactoylglutathione lyase activity 0.984  6  5 24  5 3.396 2.313

257315_at AT3G30775 Proline dehydrogenase activity 0.971  7  9 53 14 4.270 2.250

251438_s_at AT5G33355 Molecular function unknown 0.975  8 11 32  7 3.406 2.118

252984_at AT4G37990 Aryl-alcohol dehydrogenase activity; mannitol 

 dehydrogenase activity

0.947  9  8 25 85 3.170 1.562

246114_at AT5G20250 Hydrolase activity, hydrolyzing O-glycosyl 

 compounds

0.965 10 10 30 26 3.259 1.739

264524_at AT1G10070 Branched-chain-amino-acid transaminase activity; 

 catalytic activity

0.949 11 16 52 71 3.282 1.811

255046_at AT4G09650 Hydrogen-transporting ATP synthase activity, 

 rotational mechanism

0.927 12  7 12 202 -1.605 -2.917

245148_at AT2G45220 Enzyme inhibitor activity; pectinesterase activity 0.952 13 13 33 47 3.013 1.141

264580_at AT1G05340 Molecular function unknown 0.989 14 20 107  4 4.420 1.011

267002_s_at AT2G34430 Chlorophyll binding; O-acetyltransferase activity; 

 chlorophyll binding

0.917 15 21 76 161 -2.300 -3.862

Table 5. The list of 5 genes that are filtered out using small fold-changes but are highly reliable and highly significant. The 

numbers under each method name is the rank. A/C and B/C represent the fold-changes between two treatments

Affy ID Locus ID GO.Function Rel.* eBayes SAM ANOVA HLM A/C B/C

262781_s_at AT3G26340 Endopeptidase activity; threonine endopeptidase 

 activity

0.926 820 802 825 478 0.416 -0.911

254578_at AT4G19410 Carboxylic ester hydrolase activity 0.918 784 816 964 380 0.548 -0.875

252591_at AT3G45600 Molecular function unknown 0.917 811 784 784 540 0.361 -0.953

261872_s_at AT4G21660 Molecular function unknown 0.917 554 639 946 518 0.867 -0.838

260705_at AT1G32400 Protein binding 0.905 814 822 910 570 0.830 -0.489

can not believe the result from the ANOVA.

Results and Discussion 
The experiment is a completely randomized design, 
containing one treatment having 3 levels - A, B, C - and 
each is replicated:

Treatment Replicates

A Chip1, Chip2, Chip3

B Chip4, Chip5

C Chip6, Chip7, Chip8

  The data were recorded on the new Affymetrix 
GeneChip Arabidopsis Genome Array. The PM values 
were normalized using the quantile method, and RMA 
was used to determine the summary expression value.

We compare the gene lists resulting from the eBayes 
(Smyth, 2004) and SAM (Tusher et al., 2001) methods, 
classical ANOVA, and HLM for one-way ANOVA, along 
with reliability. Table 3 shows the results ordered by the 
top 15 genes from classical ANOVA. Table 4 shows the 
results ordered by eBayes. The tables display the ranks 
of the genes on the list according to the different 
methods. Table 5 lists genes that have good reliability 
and small p-values that are unfortunately prone to being 
filtered off a list of interesting genes. Table 6 lists genes 
that have a small p-value but also poor reliability that 
perhaps should be filtered off a list of interesting genes.
  By classical ANOVA (Table 3), the most significantly 
differentially expressed gene, 246785_at, is ranked as 
low as 129 by eBayes, 26 in the SAM method, and 985 
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Table 6. The list of 5 genes that are highly significant but have very low reliability. The numbers under each method name 

is the rank. A/C and B/C represent the fold-changes between two treatments

Affy ID  Locus ID  GO.Function Rel.* eBayes SAM ANOVA HLM  A/C  B/C

253743_at   AT4G28940 Undetermined 0.504 725 612 442 5958 -0.111 1.065

263048_s_at AT2G05310 Chloroplast 0.598 789 810 927 9899 -0.427 -1.391

252024_at   AT3G52880 Cytosol; undetermined 0.622 797 754 730 5085  0.284 -1.005

260917_at   AT1G02700 Mitochondrion 0.507 939 698 403 6830 -0.197  0.893

252325_at   AT3G48560 Cytosol; chloroplast 0.589 957 947 973 6810  0.165 -1.058

Fig. 5. Profiles of summary expression and PM values for genes ranked highly but hav-

ing low reliability in Table 3: 262605\_at (left) and 265575_at (right) have large variability 

in PM values. They have very low reliability, and yet they are ranked in the top 15 by 

ANOVA with p-values less than 1.0-8; the profiles suggest that these two genes are not

at all interesting.

Fig. 4. Profiles of summary expression and PM values for genes ranked highly by 

ANOVA in Table 3. Two genes, 246785_at (left) and 262128_at (right), are ranked 1 and

2, respectively, on the ANOVA list. 262128_at has quite consistent PM values and big 

differences between the treatments, which clearly makes it an interesting gene. 

246785_at has slightly less consistency and less difference between the treatments, 

which makes it really less interesting than the number 2 ranked gene.
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Fig. 7. The scatter plot matrix of reliability and ANOVA F 

statistics in GGobi. Highlighted genes (red) have high reli-

ability ones. Genes with high a ANOVA rating and low reli-

ability are identified as 246785_at, 265575_at, and 

262605_at.

Fig. 6. The scatter plot matrix from GGobi. Red highlighted 

genes have high reliability ones. If they also have high val-

ues in the analysis, they must be truly differentially ex-

pressed ones.

by HLM, and the reliability of this gene is less than per-
fect at 0.846. The methods disagree on the significance 
of this gene. The second-ranked gene, 262128_at, has 
a good reliability (0.993) and is ranked highly by 
eBayes, SAM, and HLM; so, the methods all agree that 
this is an interesting gene. Fig. 4 shows the profiles of 
PM values for these genes. The difference in variability 
of the PM values supports the position that 262128_at 
is undoubtedly an interesting gene but that 246785_at is 
much less so.
  The worst genes on this list (Table 3) are 262605_at 
and 265575_at, with reliabilities of 0.166 and 0.624, 
respectively. Fig. 5 shows the profiles of PM values for 
these genes. There is a lot of variability in the PM 
values. Although they are at the top of the ANOVA 
model's list of significant genes, they should not be on 
a final list of interesting genes.
  Table 4 shows that there is considerable agreement 
about genes between eBayes and SAM. Both methods 
adjust their test statistics by shrinking an individual 
gene's variance estimate towards the variance of all 
genes. All of the differentially expressed genes on this 
list also have high reliability. The HLM disagrees with 
eBayes and SAM about the interestingness of several of 
the genes.
  A comparison of all of the genes is possible using 
brushing in a scatterplot matrix (Becker and Cleveland, 

1988). Fig. 6 is the screenshot of the brushing being 
done with GGobi (Swayne et al., 2003). The scatterplot 
matrix has 5 diagnostic statistics: reliability, eBayes F 
values, ANOVA F values, SAM F values, and HLM χ2 

values. (Large test statistics, F, χ2 correspond to small 
p-values.) Each point in this plot represents one gene, 
with its corresponding values on the diagnostics plotted 
against the appropriate axis.
  The diagonal elements are density plots of each 
diagnostic. The eBayes, ANOVA, SAM, and HLM test 
statistics are all strongly left-skewed, which says that 
there are a lot more small values of these statistics and 
few high (important) values. Reliability has an unusual 
distribution - fewer genes have high or low reliability 
and many more genes are in the mid-range of the scale.
  The off-diagonal plots in the scatterplot matrix are the 
(5* 4/2=10) pairwise plots of the 5 diagnostics, which 
shows how the statistics are related to each other. The 
values for eBayes and SAM are very strongly related, 
with a slight non-linear relationship. eBayes and SAM 
have a reasonably close association with ANOVA, with 
the exception of a relatively small number of the genes. 
eBayes and SAM have a moderate association with 
HLM - for most genes, the HLM value seems to be the 
same as the eBayes or SAM value plus a constant. 
ANOVA has almost no relationship with HLM. Reliability 
has a much different relationship with each of the other 
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Fig. 8. Profiles of a special group of genes that have high reliability but would be ex-

cluded from a list of significantly differentially expressed genes by all methods. The pro-

files show that these genes may be important. They have small differences in the sum-

mary expression values for each treatment but also very consistent PM values.

diagnostics. Reliability and eBayes have the strongest 
association, where genes with high test statistic values 
also generally have high reliability. Many genes with 
high reliability have low test statistic values. This associ-
ation is similar for SAM and HLM but not so for ANOVA; 
there are several genes that have high ANOVA test sta-
tistics but relatively low reliability.
  Brushing on the scatterplot matrix is done in the den-
sity plot of reliability. Genes with the highest reliability 
are brushed (red). These same genes are colored (red) 
in the other plots. The values that these genes have on 
the other diagnostics is interesting; they cover the full 
range of F statistic values for eBayes, SAM, and ANOVA 
but moderate to high values of χ2 for HLM. HLM uses 
the PM values, on which reliability is calculated, in the 
model, while the methods do not; so, there should be 
some similarity between the diagnostic values. That 
there are some differences must be due to the use of 
non-robust estimates of the summary values. Comparing 
eBayes and ANOVA, the high-reliability genes have a 
very strong relationship, and there are many genes rat-
ed highly by ANOVA that have low reliability. The most 
interesting feature of the diagnostics revealed by the 
scatterplot matrix is that there are three outliers, which 
are the three genes that eBayes, SAM, and HLM all rate 
very highly: 262128_at, 251428_at, and 254098_at. 
There is also an outlier in the values of ANOVA, which 
have low reliability, and this corresponds to the gene 
that ANOVA rates very highly, counter to all of the other 
diagnostics: 246785_at. We also see several other out-
liers in the ANOVA and Reliability plot that have low reli-
ability, two of which correspond to 265575_at and 
262605_at (Fig. 7).

  From this analysis, it looks like eBayes, SAM, and 
HLM all do a reasonable job in finding significantly dif-
ferentially expressed genes. However, they can miss a 
few genes that perhaps should be detected, and they 
can also accept a few genes that perhaps should not 
be detected. Reliability helps to uncover these.
  Table 5 lists 5 genes that have high reliability (＞0.9) 
and relatively high ranks (＜1,000). But, they also have 
small fold-changes that might exclude them if filtering is 
conducted before the analysis. Profiles for two of these 
genes are shown in Fig. 8. These genes are charac-
terized by small differences in the summary expression 
values for each treatment but also by very consistent 
PM values. Based on the PM values, to which eBayes 
and SAM are blind, it could very well be argued that 
these are significantly differentially expressed genes. 
  Table 6 lists 5 genes that have very low reliability 
(＜0.65) and relatively high ranks (＜1,000). They would 
be included in the significantly differently expressed 
genes, but the reliability of these genes is very low, 
casting doubt on the interestingness of these genes. 
Based on the PM values, to which eBayes and SAM are 
blind, it could very well be argued that they are not sig-
nificantly differentially expressed genes.
  In this paper, we defined a new reliability statistic that 
can be used with any other statistical method to find 
differentially expressed genes. This measure is very 
easy to calculate, relative to applying the eBayes and 
SAM methods. Therefore, it can be used easily for the 
exploratory data analysis step as well as the intensive 
data analysis step. It also provides a guide to the var-
iance of each gene's summary expression value. This 
statistic can also be used with the other statistical 



36  Genomics & Informatics  Vol. 9(1) 28-36, March 2011

methods, like clustering and classification. The R pack-
age ProbeR for calculating and exploring reliability 
measure with GGobi is available at CRAN (http://www. 
r-project.org).
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