Synthesis of a Perfluoropolyether Intermediate via Electrophilic Fluorine-Substituting Direct Fluorination

친전자성 불소치환 직접플루오르화 반응에 의한 Perfluoropolyether 중간체의 합성

  • Yun, Seok-Min (Department of Fine Chemical Engineering & Applied Chemistry, BK21-E2M, Chungnam National University) ;
  • Lim, Jae-Won (Department of Fine Chemical Engineering & Applied Chemistry, BK21-E2M, Chungnam National University) ;
  • Jeong, Eui-Gyung (Department of Fine Chemical Engineering & Applied Chemistry, BK21-E2M, Chungnam National University) ;
  • Park, In-Jun (Research Center for Biorefinery, Korea Research Institute of Chemical Technology) ;
  • Lee, Young-Seak (Department of Fine Chemical Engineering & Applied Chemistry, BK21-E2M, Chungnam National University)
  • 윤석민 (충남대학교 정밀응용화학과) ;
  • 임재원 (충남대학교 정밀응용화학과) ;
  • 정의경 (충남대학교 정밀응용화학과) ;
  • 박인준 (한국화학연구원 바이오리파이너리센터) ;
  • 이영석 (충남대학교 정밀응용화학과)
  • Received : 2010.10.18
  • Accepted : 2010.11.18
  • Published : 2011.03.25

Abstract

This study reported the synthesis of perfluoropolyether intermediate (TP-$COOCF_3$) having a $CF_3$ functional group via electrophilic fluorine substituting direct fluorination from PFPE intermediate (TP-$COOCH_3$) having a $CH_3$ functional group, which was synthesized by the ring opening polymerization and methyl esterification of HFPO. The effects of reaction conditions such as the amount of solvent, fluorine partial pressure, reaction time, were investigated. The results showed that the yield of fluorination reaction became the highest when the reaction was carried out in a mild condition for a long reaction time, which also minimized side reactions. The sample was characterized by FTIR and NMR, which confirmed the synthesis of the final product, TP-$COOCF_3$, via direct fluorination converting $CH_3$ of TP-$COOCH_3$ to $CF_3$ of TP-$COOCF_3$ with 95.4% yield.

본 연구에서는 hexafluoropropylene oxide(HFPO)의 개환중합 및 메틸에스테르화 반응을 통하여 $CH_3$ 말단 관능기를 가진 perfluoropolyether(PFPE) 중간체 (TP-$COOCH_3$)를 합성하고, 이를 친전자성 불소치환 직접플루오르화법을 통하여 $CF_3$ 말단 관능기를 가진 PFPE 중간체 (TP-$COOCF_3$)를 합성하였다. 또한 반응조건인 용매의 양, 혼합가스 불소 부분압 및 반응시간이 TP-$COOCF_3$ 합성에 미치는 영향에 대하여 고찰하였다. 실험결과, 플루오르화 반응은 온화한 조건에서 장시간 진행하는 것이 부반응을 최소화하여 전환율을 향상시키는 것으로 나타났다. FTIR NMR 결과로부터 TP-$COOCH_3$의 말단 $CH_3$ 관능기가 친전자성 불소치환 직접플루오르화를 통하여 $CF_3$ 관능기로 치환되어 최종 생성물인 TP-$COOCF_3$가 95.4%의 전환율로 합성된 것을 확인할 수 있었다.

Keywords

References

  1. B. Bhushan, Trans. ASME. J. Tribol., 114, 420 (1992). https://doi.org/10.1115/1.2920901
  2. S. W. Chun, S. H. Park, W. Kim, and H. J. Kang, J. Korean Ind. Eng. Chem., 13, 51 (2002).
  3. E. Y. Park, S. G. Lee, J. W. Ha, I. J. Park, S. B. Lee, and Y. T. Lee, Polymer(Korea), 32, 397 (2008).
  4. R. L. Fusaro, Lubr. Eng., 51, 182 (1995).
  5. T. W. Del Pesco, "Perfluoropolyethers", in Synthetic Lubricants and High-Performance Functional Liquids, R. L. Shubkin, Editor, Marcel Dekker, New York, p 145 (1993).
  6. S. H. Park, S. W. Chun, D. J. Perettie, F. E. Talke, and H. J. Kang, Polymer(Korea), 23, 73 (1999).
  7. J. H. Lee, S. W. Chun, and H. J. Kang, Polymer(Korea), 31, 278 (2007).
  8. Dupont, G. B. Patent 904,877 (1962).
  9. D. Sianesi, V. Zamboni, R. Fontanelli, and M. Binaghi, Wear, 18, 85 (1971). https://doi.org/10.1016/0043-1648(71)90158-X
  10. Y. Ohsaka, Petrotech(Tokyo), 8, 840 (1985).
  11. W. H. Gumprecht, "The preparation and thermal behavior of hexapropylene epoxide polymers", in Proceedings of the Fourth International Symposium on Fluorine Chemistry, 1967.
  12. W. H. Gumprecht, ASLE Trans., 9, 24 (1966). https://doi.org/10.1080/05698196608972118
  13. J. W. Ha, I. J. Park, W. W. So, J. H. Kim, and S. B. Lee, Prospectives of Industrial Chemistry, 6, 1 (2003).
  14. S. G. Lee, J. W. Ha, I. J. Park, S. B. Lee, and J. D. Lee, Polymer(Korea), 32, 385 (2008).
  15. J. T. Hill, J. Macromol. Sci. Chem., A8, 499 (1974).
  16. G. V. Henne and S. B. Richter, J. Chem., 77, 4837 (1955).
  17. S. Rozen and C. Gal, J. Org. Chem., 52, 4928 (1987). https://doi.org/10.1021/jo00231a018
  18. G. A. Olah, G. K. S. Prakash, and K. Wade, Hypercarbon Chemistry, Wiley, New York, 1987.
  19. T. E. Karis, B. Marchon, D. A. Hopper, and R. L. Siemens, J. Fluorine Chem., 118, 81 (2002). https://doi.org/10.1016/S0022-1139(02)00197-5
  20. E. Murotani, S. Saito, M. Sawaguchi, H. Yamamoto, Y. Nakajima, T. Miyajime, and T. Okazoe, J. Fluorine Chem., 128, 1131 (2007). https://doi.org/10.1016/j.jfluchem.2007.08.009