Electron Beam-Induced Modification of Poly(dimethyl siloxane)

전자빔을 이용한 Poly(dimethyl siloxane)의 개질

  • Kang, Dong-Woo (Radiation Research Division for Industry and Environment, Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute) ;
  • Kuk, In-Seol (Radiation Research Division for Industry and Environment, Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute) ;
  • Jung, Chan-Hee (Radiation Research Division for Industry and Environment, Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute) ;
  • Hwang, In-Tae (Radiation Research Division for Industry and Environment, Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute) ;
  • Choi, Jae-Hak (Radiation Research Division for Industry and Environment, Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute) ;
  • Nho, Young-Chang (Radiation Research Division for Industry and Environment, Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute) ;
  • Mun, Sung-Yong (Department of Chemical Engineenng, Hanyang University) ;
  • Lee, Young-Moo (Department of Chemical Engineenng, Hanyang University)
  • 강동우 (한국원자력연구원 정읍방사선과학연구소 방사선공업환경연구부) ;
  • 국인설 (한국원자력연구원 정읍방사선과학연구소 방사선공업환경연구부) ;
  • 정찬희 (한국원자력연구원 정읍방사선과학연구소 방사선공업환경연구부) ;
  • 황인태 (한국원자력연구원 정읍방사선과학연구소 방사선공업환경연구부) ;
  • 최재학 (한국원자력연구원 정읍방사선과학연구소 방사선공업환경연구부) ;
  • 노영창 (한국원자력연구원 정읍방사선과학연구소 방사선공업환경연구부) ;
  • 문성용 (한양대학교 화학공학과) ;
  • 이영무 (한양대학교 화학공학과)
  • Received : 2010.10.05
  • Accepted : 2010.11.11
  • Published : 2011.03.25

Abstract

In this paper, poly (dimethyl siloxane) (PDMS) was modified using electron beam irradiation and its property was investigated. PDMS sheets prepared using a conventional thermal curing method were irradiated by electron beams at absorbed doses between 20 and 200 kGy and their properties were characterized using swelling degree and contact angle measurements, universal testing machine (UTM), thermogravimetric analyzer (TGA), and X -ray photoelectron spectrometer (XPS). The results of the swelling degree measurements, UTM, and TGA revealed that the swelling degree of the irradiated PDMS sheets was reduced down to 24% in comparison to the control sheet, and their compression strength and thermal decomposition temperature increased up to maximum 2.5 MFa and $10^{\circ}C$, respectively, due to the increase in crosslinking density by irradiation. In addition, on the basis of the results of contact angle measurements and XPS, the wettability of the PDMS sheets was enhanced up to 24% owing to the generation of hydrophilic functional groups on the PDMS surface by oxidation during electron beam irradiation.

본 연구에서는 전자빔을 이용하여 poly(dimethyl siloxane)(PDMS)을 개질하였으며 그 특성 변화를 분석하였다. PDMS 시트를 기존의 열경화법을 통해 제조한 후 20에서 200 kGy의 흡수선량P로 전자빔을 조사하였고, 조사된 시트들의 특성을 팽윤도 및 접촉각 측정, 만능시험분석기(UTM), 열중랑분석기(TGA), X선 광전자 분광기(XPS)들을 이용해 분석하였다. 팽윤도 측정, UTM 및 TGA 결과, 전자빔 조사에 의해 PDMS 시트의 가교 밀도가 증가함에 따라 조사된 PDMS 시트의 팽윤도는 순수한 것에 비해 최대 24%까지 감소하였고 압축강도와 열분해온도는 순수한 것에 대비 각각 최대 2.5 MPa와 $10^{\circ}C$까지 증가함을 확인하였다. 또한, 접촉각 측정과 XPS 분석 결과를 토대로 전자빔 조사에 의한 산화 반응에 의하여 PDMS 표면에 친수성 관능기들이 형성되기 때문에 PDMS 표면의 젖음성은 순수한 것에 비해 최대 24%까지 향상됨을 확인하였다.

Keywords

References

  1. Y. Wu, Y. Huang, and H. Ma, J. Am. Chem. Soc., 129, 7226 (2007). https://doi.org/10.1021/ja071384x
  2. H. Cong and T. Pan, Adv. Funct. Mater., 18, 1912 (2008). https://doi.org/10.1002/adfm.200701437
  3. Y. Zhang, E. A. Matsumoto, A. Peter, P.-C. Lin, R. D. Kamine, and S. Yang, Nano Lett., 8, 1192 (2008). https://doi.org/10.1021/nl0801531
  4. J. Tong, C. A. Simmons, and Y. Sun, J. Micromech. Microeng., 18, 037004 (2008). https://doi.org/10.1088/0960-1317/18/3/037004
  5. P. Nandi, D. P. Desal, and S. M. Lunte, Electrophoresis, 31, 1414 (2010). https://doi.org/10.1002/elps.200900612
  6. H. Xu and J. Huskens, Chem. Eur. J., 16, 2342 (2010). https://doi.org/10.1002/chem.200902504
  7. T. Kaufmann and B. J. Ravoo, Polym. Chem., 1, 371 (2010). https://doi.org/10.1039/b9py00281b
  8. A. G. Chmielewski, M. Haji-Saeid, and S. Ahmed, Nucl. Instrum. Methods Phys. Res. Sect. B, 236, 44 (2005). https://doi.org/10.1016/j.nimb.2005.03.247
  9. J.-S. Lee, C.-H. Jung, S.-Y Jo, J.-H. Choi, I.-T. Hwang, Y.-C. Nho, Y.-M. Lee, and J.-S. Lee, J. Polym. Sci. Part A: Polym. Chem., 48, 2725 (2010). https://doi.org/10.1002/pola.24045
  10. H. M. Lee, Y. N. Kim, B. H. Kim, S. O. Kim, and S. O. Cho, Adv. Mater., 20, 2094 (2008). https://doi.org/10.1002/adma.200702221
  11. I. Rezaeian, S. H. Jafari, P. Zahedi, M. Ghaffari, and S. Afradian, Polym. Adv. Technol., 20, 487 (2009). https://doi.org/10.1002/pat.1298
  12. S. Burkert, M. Kuntzsch, C. Bellmann, P. Uhlmann, and M. Stamm, Appl. Surf. Sci., 255, 6256 (2009). https://doi.org/10.1016/j.apsusc.2009.01.096
  13. A. M. Abdul-Kader, A. Turos, R. M. Radwan, and A. M. Kelany, Appl. Surf. Sci., 255, 7786 (2009). https://doi.org/10.1016/j.apsusc.2009.04.176
  14. S.-H. Choi, J.-H. Kim, and S.-B. Lee, J. Membr. Sci., 229, 54 (2007).
  15. K. Yu and Y. Han, Soft Matter, 2, 705 (2006). https://doi.org/10.1039/b602880m
  16. A. S. Palsule, S. J. Clarson, and C. W. Widenhouse, J. Inorg. Organomet. Polym., 18, 207 (2008). https://doi.org/10.1007/s10904-008-9205-0