In-mold Decoration 포일에 사용되는 경질 코팅 수지의 전자빔 경화

Electron Beam Curing of Hard Coating Resin for In-mold Decoration Foils

  • Sim, Hyun-Seog (Department of Polymer Science and Engineering, Inha University) ;
  • Yun, Deok-Woo (Department of Polymer Science and Engineering, Inha University) ;
  • Kim, Geon-Seok (Department of Polymer Science and Engineering, Inha University) ;
  • Lee, Kwang-Hee (Department of Polymer Science and Engineering, Inha University) ;
  • Lee, Byung-Cheol (Korea Atomic Energy Research Institute)
  • 투고 : 2010.09.16
  • 심사 : 2010.11.11
  • 발행 : 2011.03.25

초록

In-mold decoration 포일의 경질 코팅 층에 사용하는 수지를 대상으로 전자빔(electron beam, EB) 경화에 관한 연구를 수행하였다. 시료에 다른 양의 EB를 조사하고 경화 반응 정도를 Fourier transform infrared(FTIR) spectroscopy를 사용하여 관찰하였다. EB 조사선량 증가에 따른 코팅 물성의 변화를 표면 경도와 내마모성을 중심으로 알아보았다. 또한 나노 입자 첨가가 코팅 물성에 미치는 영향을 조사하였다. 본 연구로부터 얻은 실험적 결과는 자외선(ultraviolet, UV) 경화 시스템과 유사한 EB 경화 시스템의 상업적 개발에 이용될 수 있을 것으로 기대된다.

The electron beam (EB) induced curing of a typical resin designed for the hard coating layer of in-mold decoration foils was investigated. The samples were irradiated with different doses of EB and the curing reaction was monitored by Fourier transform infrared (FTIR) spectroscopy. The change in coating properties such as surface hardness and anti-abrasion property was studied as a function of increasing dose. The effect of the addition of nano-particles on the improvement of coating properties was also examined. It was expected that the experimental results could be used for the commercial exploitation of the EB curing system comparable to the ultraviolet (UV) curing system.

키워드

참고문헌

  1. Y. W. Leong, M. Kotaki, and H. Hamada, J. Appl. Polym. Sci., 104, 2100 (2006).
  2. S. C. Chen, S. T. Huang, M. C. Lin, and R. D. Chien, Int. Commun. Heat Mass, 35, 967 (2008). https://doi.org/10.1016/j.icheatmasstransfer.2008.04.008
  3. S. C. Chen, H. M. Li, S. T. Huang, and Y. C. Wang, Int. Commun. Heat Mass, 37, 501 (2010). https://doi.org/10.1016/j.icheatmasstransfer.2010.01.005
  4. C. Decker, F. Masson, and R. Schwalm, Macromol. Mater. Eng., 288, 17 (2003). https://doi.org/10.1002/mame.200290029
  5. J. Jacob, H. L. Chia, and F. Y. C. Boey, Polym. Test., 14, 343 (1995). https://doi.org/10.1016/0142-9418(94)00034-C
  6. K. Xu, M. Chen, X. Zhang, and K. Zhang, Macromol. Chem. Phys., 205, 1559 (2004). https://doi.org/10.1002/macp.200400124
  7. J. R. Greer and R. A. Street, Acta Mater., 55, 6345 (2007). https://doi.org/10.1016/j.actamat.2007.07.040
  8. P. Granat, M. Pudas, O. Hormi, J. Hagberg, and S. Leppavuori, Carbohyd. Polym., 57, 225 (2004). https://doi.org/10.1016/j.carbpol.2004.04.014
  9. C. Decker, F. Masson, and R. Schwalm, Polym. Degrad. Stabil., 83, 309 (2004). https://doi.org/10.1016/S0141-3910(03)00276-3
  10. C. Decker, L. Keller, K. Zahouily, and S. Benfarhi, Polymer, 46, 6640 (2005). https://doi.org/10.1016/j.polymer.2005.05.018
  11. W. Y. Chiang and S. C. Chan, J. Appl. Polym. Sci., 34, 127 (1987). https://doi.org/10.1002/app.1987.070340111
  12. J. V. Crivello, M. Fan, and D. Bi, J. Appl. Polym. Sci., 44, 9 (1992). https://doi.org/10.1002/app.1992.070440102
  13. C. Patacz, B. Defoort, and X. Coqueret, Radiat. Phys. Chem., 59, 329 (2000). https://doi.org/10.1016/S0969-806X(00)00262-0
  14. F. Bauer, R. Flyunt, K. Czihal, H. Langguth, R. Mehnert, R. Schubert, and M. R. Buchmeiser, Prog. Org. Coat., 60, 121 (2007). https://doi.org/10.1016/j.porgcoat.2007.07.005