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STIELTJES DERIVATIVES AND ITS APPLICATIONS TO
INTEGRAL INEQUALITIES OF STIELTJES TYPE

YuNG Jin Kim

ABSTRACT. In the present paper, we obtain integral inequalities involving the Kurz-
weil-Stieltjes integrals which generalize Gronwall-Bellman inequality and we use the
inequalities to verify existence of solutions of a certain integral equation. Such
inequalities will play an important role in the study of impulsively perturbed systems

[9].

1. INTRODUCTION

Differential and integral inequalities have become a major tool in the analysis of
the differential and integral equations that occur in nature or are constructed by
people. A good deal of information on this subject may be found, e.g., in (8].

One reason for much of the successful mathematical development in the theory
of ordinary and partial differential equations is the availability of some kinds of
inequalities and variational principles involving functions and derivatives.

Most of the inequalities developed so far in the literature, which provide explicit
known bounds on the functions appearing in differential, integral and other equa-
tions, perform quite well in practice and hence have found wide spread acceptance
in a variety of applications. Because of this, it is not surprising that numerous
studies of new types of inequalities have been made in order to achieve many new
developments in various branches of mathematical science and engineering practice.

In the present paper, we obtain integral inequalities involving the Kurzweil-
Stieltjes integrals which generalize Gronwall-Bellman inequality. Such inequalities
will play an important role in the study of impulsively perturbed systems [9].

For Stieltjes type integral equations, see [5,7,13,14], and for integral inequalities
involving Stieltjes type integrals, see [1,2,4].
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2. NOTATIONS AND PRELIMINARIES

Assume that [a, b], [c,d] C R are bounded intervals, where R is the set of all real
numbers.
A function f : [a,b] — R is called regulated on [a, b] if both

fls+) = lim f(s+mn), and f(s~) = lLim f(s —n)

exist for every point s € [a,b]. As a convention we define f(a—) = f(a) and f(b+) =
f(b). In this case we denote f € Gla,b]. If we let for f € Gla,b], ||fllja51,00 =
SUPgelq,p) | £(8)]; then (Gla,b], || - [|ja,t,00) becomes a Banach space.

Let g : {a,b] — R. For a closed interval I = [c,d], we define g(I) = g(d) — g(c).
A function f : [a,b] — R is of bounded variation on [a, b] if

(2.1) VA(S) = sup{3_ £ (ftim1, 6]} < oo,
=1

where the supremum is taken over all partitions
a=t)<t1 < - - <tp1<tp,=0b
Then we denote f € BV[a,b]. We use the following notations for the convenience:
ATf(s) = f(s+) — f(s), ATf(s) = f(s) — f(s—) and Af(s) = f(s+) — f(s-)-

A tagged interval (7,c,d]) consists of an interval [c,d] C [a,b] and a point 7 €
[c,d]. Let I; = [c;,di] C [a,b]. A finite collection {(7;,[c;,di]) : ¢ = 1,2,..,n}
of pairwise non-overlapping tagged intervals is called a tagged partition of [a,b] if
UZ_,I; = [a,b]. A positive function § on [a,b] is called a gauge on [a, b].

Definition 2.1 ([6,13]). Let 4 be a gauge on [a, b]. A tagged partition
P={(r,[ti-1,ti]) : i =1,2,...,m}
of [a, b] is said to be §—fine if for every i = 1,...,m we have
7 € [tio1, 6] C (15 — 8(m), 7 + 0(m)).
If moreover a §—fine partition P satisfies the implications
i=ti1=>i=1 =t =>i=m,
then it is called a 0*—fine partition.

The following lemma implies that for a gauge 6 on [a,b] there exists a §*—fine
partition of [a,b]. This also implies the existence of §—fine partition of [a, b].
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Lemma 2.2 ({6, Lemma 1.2]). Let§ be a gauge on [a, b] and a dense subset 2 C (a, b)
be given. Then there exists §*—fine partition P = {(7;, [ti=1,t:)) : i1 = 1,2,...,m} of
[a,b] such thatt; € Q fori=1,...m— 1.

We are now ready to give a formal definition of both types of the Kurzweil
integral.

Definition 2.3 ([6,13]). Assume that f,g: [a,b] — R are given. We say that fdg
is Kurzweil integrable (or shortly, K -integrable) on [a.b] and v € R is its integral if
for every € > 0 there exists a gauge é on [a b] such that for

S(fdg,P) = Z f(r)g(L:),

we have
|S(fdg, P) —v| < e,
provided P = {(7;,I;) : i = 1, ...,n} is a —fine tagged partition of [a,b]. In this case
we denote v = f:f(s)dg(s) (or, shortly,v = f: fdg).
If, in the above definition, d—fine is replaced by &*—fine, then we say that

fdg is Kurzweil® integrable(or, shortly, K*-integrable) on [a,b] and we denote v =
(K*) J; fdg.

The integrals have all usual properties as integrals need to have. For the proofs,
see, e.g., [13,14].

Theorem 2.4. Assume that f, f1, f2,9 : [a,b] — R and that fidg and fadg are

integrable in the sense of Kurzweil or Kurzweil* on [a,b]. Let ki,ke € R. Then we
have

b b b
/ (k1f1 + k2f2)dg = kl/ fidg + kz/ fadg.
If for c € [a,b], integrals [ fdg, fcb fdg ezist, then f: fdg exists and we have

Lbfdg=chdg+/cbfdg.

Kurzweil integrals have the following particular property.

Theorem 2.5. Assume that f,g: [a,b] — R and that fdg is K-integrable. If g is
a regulated function on [a,b], then we have

s+ r]
lim / " fdg = / Fdg + F(s)(a(s£) — g(s)).

7—0+ J,

For the integrability we have the following fundamental result.
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Theorem 2.6. Assume that f € Gla,b] and g € BV{a,b|. Then fdg is K-integrable
on [a,b].
The following result is used frequently in our proofs.

Theorem 2.7 ([5]). If f € Gla,b], then f is bounded on [a,b] and [ is continuous
at every t € [a,b] — C, where C is a countable set.

3. THE STIELTJES DERIVATIVES

Throughout this section, we assume that f € Gla,b] and g is a nondecreasing
function on [a, b].

A neighborhood of t € [a,b] is an open interval containing t. We say that the
function g is not locally constant at t € (a, b) if there exists n > 0 such that ¢ is not
constant on (t—¢,t+¢) for every € < n. We also say that the function g is not locally
constant at a and b, respectively if there exists n > 0 such that g is not constant on
la,a +€), (b —¢,b], respectively for every € < 7.

Definition 3.1. If g is not locally constant at ¢ € (a,b), we define
g _ L fetn) - fE-6)

= m ,
dg(t) né—0+ g(t+n)~g(t—9d)
provided that the limit exists. If g is not locally constant at ¢ = a and ¢t = b

respectively, we define

#@ _ o fetm)-f@)  dO) _ . ) - fb-0)
dg(a) n—0+ gla+mn)—g(a)’ dg(b) -0+ g(b) —g(b—d)’
respectively. Sometimes we denote %E% = fo(t).

If both f and g are constant on some neighborhood of ¢, we define %8)7 =0.

Remark 3.2. It is obvious that if g is not continuous at ¢ then fy(t) exists. Thus if
f4(t) does not exist then g is continuous at t. fj(t) is called the Stieltjes derivative.

Throughout this section we only prove for t € (a,b) because the proofs for ¢t =
a,t = b are very similar to the proof for t € (a, b).

We have the following differentiation rule.

Theorem 3.3. Assume that if g is constant on some neighborhood of t then both

f1 and fy are also constant there. If %‘% and %%%) exist and if f1, f2 € Gla,b|,

then we have
dla®) ()] _ dh(t)
dg(t) dg(t)

dfa(t)
dg(t)’

fa(t+) + fi(t-)

t€la,bl
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Proof. First assume that g is not locally constant at ¢, then we have

filt +n)f2(t + 1) = fi(t = 6) f2(t - )
g(t+n) —g(t - 9)
filt +n) = fi(t =)

fa(t + 1) — fo(t = 0)
g(t+n) —g(t - 9)

dfi(t) dfa(t)
t [ B 8 0+.
T gy PO A gy e mo 0
If ¢ is constant on some neighborhood of ¢, then % =0= %g by definition.
In this case the proof is obvious. U

K*-integrals recover Stieltjes derivatives.

Theorem 3.4. Assume that if g is constant on some neighborhood of t then f is
also constant there. Suppose that f(t) ezists at every t € [a,b] — {c1,¢2, ...}, where
[ is continuous at every t € {c1,ca,...}. Then we have

b
(K) / 1i(8)dg(s) = £(b) - f(a).

Proof. Let C = {c1,c2,...}. We put fo(c;) = 0,i = 1,2,... Let £ > 0 and define a
gauge § as follows:

if 7 € [a,b] — C, use the existence of fy(7) to choose a gauge § so that if (7,1) is
§*—fine, then

|F(T) = fo(m)g(D)] < elg(D));

if 7 = ¢;, use the continuity of f at ¢; to choose a gauge d so that if (r,I) is §*—
fine, then

@) < 5.

Note that if g is constant for some neighborhood of ¢, then f is also a constant there,
by assumption. So, in this case, f(I) = 0 = g(I). Keeping this in mind, we proceed
to the proof.

Now suppose that P = {(7;,I;) : ¢ = 1,..,n} is a §*—fine tagged partition of
{a,b]. Let P, be the subset of P that has tags in C and P, = P— P.. If (r;, ;) € Py,
then

|f(£:) = fo(ri)g(I)] < eg(li).
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If (1, I;) € P, then |f(I;)| < 57 for some j = 1,2,.... Let 7 be the set of integers ¢
such that ¢; is a tag of P,. Then we have

3" fi(r)e(L) - f(la, b))
i=1
< Z |fo(ridg(L:) — £(F:)| + Z (L))

<6g([a b)) +Z =¢(g([a b])+1)

i€En

Hence f,dg is K*-integrable and

b
(") / fidg = £(5) - f(a).
[}

Lemma 3.5. Assume that g is not locally constant at t € [a,b]. If f is continuous

at t or if g is not continuous at t, then
d t
—— [ f(s)dg(s) = f(t)
2 [, Feats) = £
Proof. First assume that f is continuous at t, then

t+n
g(t—6,t+mn) inf f(s) s/ fdg<g([t—6,t+n]) sup f(s)
SE[t—6,t+n) t—o8 s€ft—8,t+n]

This implies

ft+77
inf §) L 77— ——< < su 5).
sE[t—4,t+n] f(s) < g(lt—o,t+ 77]) sE[t«-JI,:-I'VI] fle)

Since f is continuous at t,

li inf t)y= 1 .
17,61—>I%+ sE[tl—I:S,t+17] f(S) f( ) ln(l)+ se[f‘?;_'_n] f(S)

Thus we have
ot | fee)= 10,

Next suppose that g is not continuous at ¢, Then by Theorem 2.5 we have

. S fdg  f)Ag(t)
e e o e Rl v B ACS

Now the proof is complete. O
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Remark 3.6. We see that F%tj fat f(s)dg(s) may not exist at points where g is
continuous since if g is not continuous at t then #(t) fat f(s)dg(s) exists. If g is
constant on some neighborhood of ¢, then fat fdg is also constant there. So in this
case we have T;%ZS It £(s)dg(s) = 0 by definition.

Lemma 3.7. Suppose that g is not locally constant at t. Then
d
dg(t)

if both f and g are continuous at t.

[6— I f(S)dg(S)] = f(t)e Ji f(s)dg(s),

And suppose that the function f is nonnegative on [a,b]. Then

_d_ [t F0)] = _ (p)em e B,

dg(t)
if g is not continuous at t, where —f(t)A*g(t) < k < fF(£)A~g(t).
And suppose that g is constant on some neighborhood of t. Then we have
d
dg(t)

[e— Ja f(S)dg(S)] -0

Proof. First suppose that g is not locally constant at ¢. Let F(t) = fat fdg. Assume
that both f and g are continuous at t. Since F is continuous at ¢ and e~ is
differentiable on [a, b], we have

e P — o= FU=0) — [F(t 4 ) — F(t = 8)] - [~ 7 +(n, 8)],
where v(n,8) — 0 as 7,6 — 0 + . And since Fy(t) = f(t), we have
Flt+n)—F(t—0)=[g(t+n) —g(t— 8] {f() + uln,3)],
where u(n,8) — 0 as 7,6 — 0+ . So we have
e P — e=FU=0) — [g(t +m) — g(t — 6)] - [£(t) + u(n, 8)] - [-e™"®) +v(n, 8)].

Thus we have
e~ F(t+n) _ o~ F(t-5)
g(t+mn) —g(t—10)
Taking limy, 5_,04 to both sides, we obtain

d
dg(t)

= [f(t) +u(n,0)] - [-e~F® + v(n,5)].

[e— Ja f(s)dg(s)] = _f(t)e Ja F&)g(s),
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Next suppose that g is not continuous at ¢. Then, if f(t) # 0,

eI fdg _ o~ [0 fdg -} fdg[e= (A g(t) _ f(H87g(t))

P T ) R Ag)
= o Jisag T OB gk
= —e o fdg A = F(t)eJa fioek,

by Theorem 2.5 and the Mean Value Theorem, where

—f(t)A*g(t) <k < f(B)ATg(2).
The proof in case that f(t) = 0, is obvious since e~/ (37 9(t) _ of()AT9(t) = g,
The last statement is obvious by definition since whenever g is constant on some

t
neighborhood at ¢, / fdg is also constant there. O
3

4. INTEGRAL INEQUALITIES OF GRONWALL-BELLMAN TYPE
INVOLVING STIELTJES INTEGRALS

Throughout this section we assume that f € Gla,b] is nonnegative on [a,b] and
a function g is nondecreasing and left-continuous on [a,b]. Also we only prove for
t € (a,b) because the proofs for t = a,t = b are very similar to the proof for t € (a,b).
In this section we obtain our main result by using the previous results.

Theorem 4.1. Assume that u € Gla,b] and that u > 0 on [a,b]. Then the integral
inequality
t
u® et [ fOusdgl), 20, te ol
implies
u(t)<c- eJa fs)dg(s) - ¢ ¢ [a,b].
Proof. Define a function 2(t) = c + f: F(s)u(s)dg(s), t € [a,b], then u(t) < z(t) and
z(a) = ¢. First suppose that g is not locally constant at ¢. Then by Lemma 3.5
z9(t) = f()u(t) < F()2(2),

if f and u are continuous at ¢, or if g is not continuous at t. Then by Lemma 3.5,
Lemma 3.7 and Theorem 3.3 we have, if f, g and u are continuous at ¢,

dgazt) [z(t)e° Ia fdg] = z;(t)e“ [Lfdg _ F)z(t)e™ It fag <0.
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Now suppose that g is not continuous at ¢. Then by Lemma 3.7, Theorem 2.5
and remembering that A~g(t) = 0, we have, since — f(t)Atg(t) < k < f(t)Ag(t),
d [=(t)e= 2
- |2(t)e" Vo 9}
4g)

= 2 (#) li ~Ja " fdg t—
g()nirnge + 2(t-)

D [e 1= 74]

= Z,(t)e” fa fdg —f(O)DFg(t) _ [2(t) — FOuE) A~ g()]f(t)e” fa fdg ok
< f(®)z(t)e” Jo Fdgg—FB)A*g(t) _ F@®)z(t)e™ J2 sdg k
< F(t)a(t)e™Je 40 [mIOATS0 _ k] <o,
Finally assume that g is constant on some neighborhood of ¢, then z(t)e™ Ja fdg

is also constant there, we have ﬁt’j {z(t)e“fat / dg] = 0 by definition.
Thus in any case we have

(4.1)

dgczs) [z(e)e S 7] <0

for every s € [a,b] — {c1,¢2,...}, where g is continuous at ¢; for every i = 1,2, ....
Hence if we integrate both sides of (4.1) from a to ¢ and using Theorem 3.4 we obtain
z(t)e” fafdg _ z{a) < 0.
and, since z(a) = ¢, we conclude that
u(t) < 2(t) < c- elo f4.
This completes the proof. a

Corollary 4.2 ([14, Theorem 4.30]). Suppose that u € Gla,b] is nonnegative on

[a,b]. And assume that K1, Ka > 0. Then, for every t € [a,b],
t

u(t) < Ky + Ky / u(s)dg(s)

a
implies
u(t) < Kl eKz(g(t)-“g(a)) .

Proof. The proof is obvious from Theorem 4.1. a
Remark 4.3. In [2], the authors obtained some results on the following integral
inequality
t
u®) <c+ [ 1(6)uls)dg(s).
a

But the authors require that f(s)g'(s) > 0 for every s € [a,b]. This condition is
more restrictive than ours.
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Theorem 4.4. Assume that a,b,q € Gla, 8] are nonnegative on [a, §]. Suppose
that u € Gla, 8] is nonnegative on |a, 5]. Then

u(t) < F() +a(t) / (a(s)u(s) + b(s)]dg(s), t € o f]
implies

u(t) < f(2) + q(t) / [a(5)£(s) + b(s)]els **dg(s).

Proof. Define a function z(t) = f;[a(s)u(s) + b(s)]dg(s), t € e, B}, then u(t) <
f(t)+q(t)z(t) and z(a) = 0. First suppose that g is not locally constant at ¢. Then
2g(t) = alt)u(t) + b(t) < a(t)f(t) + a(t)q(t)=(t) + b(2),
if au+b is continuous at ¢, or if g is not continuous at t. Then by Lemma 3.5, Lemma,

3.7 and Theorem 3.3 we have, if au + b, ag and g are continuous at ¢,

Eitj [Z(t)e” f; angl = z;(t)e‘ f,f, agdg _ a(t)q(t)z(t)e‘f; aqdg

= [2(t) — 2()a(t)g(t)])e™ Ja 2%
< [a(®) f(£) + a(t)q(t)z(t) + b(t) — a(t)q(t)z(t)]e” ! agdg
= [a(t)f(t) + b(t)]e~ Jaoads.
Now suppose that ¢ is not continuous at ¢£. Then by Lemma 3.7, Theorem 2.5
and remembering that A~g(t) = 0, we have, since

—a(t)q(t)A%g(t) < k < a(t)q(t)A™g(2),
;i_g% [z(t)e" Ja “ng] = z,(t) nl—i»%l+ e~ JaT"00ds 4 (1)
= Z(t)e Ja agdg o —a(t)a()A*g(t) _ [2(2) — (a(t)u(?)
+b(£) A g()]a(t)g(t)e™ Ja 2%k
< [a()) /(1) + a(0)g(D)z(t) + b()]e™ Ja 2a9e=2DaAT o)
~a(t)q(t)z(t)e™ Ja 2299k
< [a(t) f(t) + b(t)]e Jaoadse—eBa®Atg(t)
+a(t)g(t)2(t)e™ Jae% {e'“(t)q(‘)wg(t) - e"]

E:q%j [e— I aqdy]

< [a(t)£(£) + b(t)]e™ Ja e,

Finally assume that g is constant on some neighborhood of ¢, then z(t)e™ [z aadg
is also constant there, we have @%{5 [z(t)e" IN “ng] =0 < [a(t) f(2) + b(t)]e” Jaoadg
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Thus in any case we have

(4.2) [2(s)e™ faoats] < [a(s) £ (5) + b(s))e™ 2o

d
dg(s)
for every s € [a, ] — {c1,c¢2, ...}, where g is continuous at ¢; for every i = 1,2,....

Hence if we integrate both sides of (4.2) from « to ¢t and using Theorem 3.4 we
obtain

s(t)e” 20 - 2(a) < [ [a(9)f() + bo)e™ o odg(s).

and, since z(a) = 0, we conclude that

u(t) < f(t) +q(t)2(t) < f(t) + q(t) f [a(s) £(5) + b(s)]eSs “%dg(s).

«

This completes the proof. Ol

5. AN APPLICATION TO AN INTEGRAL EQUATION OF STIELTJES TYPE

In this section we apply our results to an integral equation

t
(5.1) 2(t) = £(t) + q(t) / K (s,2(s))dg(s), £ € [0,00),

where f,g,q, K are known functions and z is a unknown function.

A set A C Gla, b] has uniform one-sided limits at ty € [a, b] if for every € > O there
is § > 0 such that for every z € A we have: if t; < t < to+4d then |z(t) —z(to+)] < &
if tg — 6 < t < tg then |$(t) - J}(to—~)f < E.

A set A C Gla, b} is called equi-regulated on [a,d] if it has uniform one-sided limits
at every point tg € [a, b].

Let X be a linear space, recall that a semi-norm on X is a mapping |-}: X —
[0, 00) having all the properties of a norm except that |z} = 0 does not always imply
that z = 0.

Suppose that we have a countable family of semi-norms on X, |- |; we say that
this family is sufficient if and only if for every z € X,z # 0 there exists a positive
integer n such that |z|, # 0.

Every space (X,| - |5), endowed with a countable and sufficient family of semi-

norms can be organized as a metric space by setting the metric

(5.2) d(z,y) =

n=—

i ix‘yln
12"1+|a:—-y[n'

It is well-known fact that (X, d) forms a locally convex space (see, e.g.,[11]).
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Recall that the convergence determined by the metric d can be characterized as
follows:
z, — z if and only if for every positive integer n, limy,—o0 |Zm — Z}n = 0.

To accomplish our purpose we need the following results.
Theorem 5.1 ([12, Schaefer’s fixed point theorem]). Let X be a linear locally
convez space and let T : X — X be a completely continuous map. If the set
®={z€X:2=ATz for some A€ (0,1)}
is bounded, then T' has a fized point.
For compactness of a set A C G[a, b], we have the following result.

Theorem 5.2 ([3, Corollary 2.4]). A set A C Gla,b] is relatively compact if and
only if it is equi-regulated on [a,bland for every t € [a,b] the set {z(t) : xz € A} is
bounded in R.

We will use the following hypothesis:
(H) the function K : [0,00) x R — R is continuous on [0,00) x R and there is
a regulated function a : [0, 00) — [0, 00) such that

|K (s, 2)| < a(s)]z]|

for every (s,z) € [0,00) x R.

We say that g : [0,00) — R is locally of bounded variation on [0,00) if g €
BV[0,T] for every T > 0 and we denote g € BVj,[0, 00).

We denote G[0, 00) as the set of all functions defined on [0, 00) which have both
left and right limits at every point ¢ € [0, c0). '

Using these preliminaries we can obtain the following result for the integral equa-
tion (5.1).

Theorem 5.3. Assume that f,q € G[0,00) and that K : [0,00) x R — R satisfies
condition (H). Suppose that g € BV,|0,00) is left-continuous. Then (5.1) has a
solution in G0, 00).

Proof. We define semi-norms for every positive integer n as follows:
|fln=sup |f(s)]-
s€[0,n}

We define an operator T : G[0, c0) — G[0,0) as
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Tx(t) = f(t) + q(t) /0 K(s,2(s))dg(s), t € [0,0).

We will show that T is completely continuous on G[0,c0).

Assume that z, — z in G[0,00). Then for every positive integer n we have

lim |zm — |, =0
m— 00

and this implies that there is a nonnegative number M, such that |Zm|n, |Z|n < My.
By hypothesis (H), we get
(5.3) K (s, zm(s)) — K(8,2(8))| < (|Tm|n + |Z|n)a(s) < 2Mpa(s), s € [0,n].

Now we set v(s) = V§(g)(see, (2.1)). Note that if g is left-continuous on [0, c0) then
v(s) is also left-continuous there. By (5.3) and [10, Corollary 2.3.7], we have

n

(5.4) lim |K (s, zm(s)) — K(s,z(s))]dv(s) = 0.

m-—00 0

And for every t € [0, n],
[T2n(6) = ToO] < labn [ 1K (5,3m(5) = K (s, 2(s)) (o)
implies
[T = Taln < labs | 1K(s,2m(s)) = K (s, 2(s)ldu).

So by (5.4) we have limy, o0 |TZm — Tz|n = 0. Thus we conclude that the operator
T is continuous on G{0, 00).

Let A be a bounded subset of G[0,c0). Since A is a bounded set in G[0, o0), for
every positive integer n there is a nonnegative number M, such that |z}, < M, for
all z € A. Then for every z € A and for every ¢ € [0,n],

t
T(t)] < |F(0)] + lq(®) / K (s, 2(5))\dv(s)
t
<1701+ la®)] / a(s)l(s)|dv(s)

< fln + Malgln /0 a(s)dv(s).

Thus we conclude that {Tz : z € A} is equi-bounded on [0, n].
Let ¢y € [0,n) and assume that ¢;,tx — to+ as j,k — oco. Then



76 YunG JIN KiM

[Tz(t;) ~ Tx(te)|
ij tx
a(t;) /0 K (s,2(s))dg(s) — qte) /0 K(s,2(s))do(s)

<

+1£(t5) — £t

t; t
< )qm) /0 K(s,(s))da(s) ~ a(t;) /0 K (s,(s))do(s)
1) - Few)]

+late) [ K a(odste) —atw) [ Koo
<lae) [ 16,6t

Hale) = atw)l [ 1K, m(o)ldo) + 15(6) ~ F(60)
< la(ty) / a(e)la(s)ldv(s) + lats) - ate) [ ala(e)ldu(s) +15(t5) = £t

t; n
< Malgln / a(s)dv(s) + Malq(t;) — q(te)| /0 a(s)dv(s) + | f(t;) — F(te)l-

t
Since by Theorem 2.5,
t.
/] a(s)dv(s) — 0+
t

k

as j, k — oo, for every ¢ > 0 there is a positive integer N such that
|Txz(t;) -~ Tx(te)l < ¢,

whenever j, k > N.
Now let tj,t — to— as j,k — oo. Then similarly we can show that for every

€ > 0 there is a positive integer N* such that
|Tz(t;) — Tz(t)| <&,

whenever j, k > N*. This implies that {Tz : z € A} is equi-regulated on [0, n]. Thus
we have shown that by Theorem 5.2 the operator T is completely continuous on
G[0, o) for the semi-norm |- |,. Hence we conclude that T is completely continuous
on GJ0, 00).

Finally we show that the set

® = {2 €G[0,00) : 2= ATz for some A€ (0,1)}

is bounded. Let z € ®. Then we have for every t € [0, 7]
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t
|lz(®)| = [AT=(®)] < |f(0)} + lq(t)l/0 |K (s, z(s))l|dv(s)
<@+ IQ(t)I/O a(s)|z(s)|dv(s).

By Theorem 4.4, we get for every t € [0,n)]
t t
201 < \fla-+lals [ (@)l F()elt 4os).

Since fot a(s)|f(s)|ef: alaldv 4yy(s) is regulated on [0,7n] and so bounded on [0,7), z is
also bounded on [0, n]. Thus there is a nonnegative number M,, such that |z|, < M,
for all z € ® and we conclude that ® is bounded in G[0, c0).

Hence by Theorem 5.1, there is an ¢ € G[0, co) such that = Tz. This completes
the proof. u

Corollary 5.4. Assume that f,q € G[0,00) and g € BV),c[0,00) is left-continuous
on {0,00), and K : [0,00) x R — R satisfies condition (H).
Suppose that f(t),q(t) = 0 as t — oo and that

t
[ a1ttt “iangs)
0
is bounded on [0,00). Then every solution of (5.1) approaches to 0 ast — oo.

Proof. In the proof of Theorem 5.3 we get

lz(t)] < 1F(@)] + Iq(t)|/0 a(s)|(s)lelr l® du(s).

By hypotheses, it is obvious that every solution of (5.1) approaches to 0 as t — oo.
O
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