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Ternary Codes from Modified Jacket Matrices

Xueqin Jiang, Moon Ho Lee, Ying Guo, Yier Yan and Sarker Md. Abdul Latif

Abstract: In this paper, we construct two families C;, and C};, of
ternary (2™,3™, 2™~ 1) and (2™,3™F1 2™ ~1) codes, for m =
1,2,3, -, derived from the corresponding families of modified
ternary Jacket matrices. These codes are close to the Plotkin bound
and have a very easy decoding procedure.

Index Terms: Algebraic integers, cyclotomic fields, Jacket codes,
Kronecker products of matrices, modified ternary, meodified
ternary Jacket matrices.

1. INTRODUCTION

Many discrete signal transforms are based on the use of
transform matrices with entries on the complex circle, such as
the family of discrete generalized transforms (DGT) for sig-
nals of length n = 2™ [1, 10.2]. This family includes the
Walsh-Hadamard transform (WHT) and the 2™ -point discrete
Fourier transform (DFT). Interpretation of the Cooley-Turkey
fast Fourier transform (FFT) in terms characters of abelian
groups [2], [3] means that the DFT is itself a generalized trans-
form which includes the WHT. Both of the WHT and DFT are
suboptimal discrete orthogonal transforms, but each has wide
application.

The above transform matrices belong to the more general
matrices, Jacket matrices, which are motivated by the center
weighted Hadamard matrices [4]. In a general definition, any
square matrix [J] = [js]nxn is called a Jacket matrix if its
inverse matrix is obtained simply by an element-wise inverse

[51-[7], namely,
=]
c js,t nxn

for 1 < s,t < n where T denotes the transpose of the ma-
trix, c is the normalized constant. The cyclic function on Jacket
matrices will be help in signal processing [8], sequence design,
cryptography [9], and quantum information [7].

In this paper, we consider two families {M,, } and {M,,} of
modified ternary Jacket matrices and construct the correspond-
ing families {C%,} and {C* } of nonlinear ternary codes C,
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and C’;‘w derived from the matrices M, and M, respectively.
The parameters of these codes are described as follows.
Theorem 1: The ternary codes C;;, and C;;, have parameters

(2m, 3m, 2m—1) and (Qm, 3m+1’ 2m—1)

am—i
2

respectively, and correct ¢ < [ ] €ITOrS.

The rest of this paper is organized as follows. In Section II, we
will introduce a family of modified Jacket matrix. In Section III,
we introduce two families {C},} and {C},} of nonlinear p-
ary codes. Section IV introduces the encoding procedure and
Section V introduces the decoding algorithm. In Section VI, we
give an example of a ternary Jacket code. Finally, Section V
concludes the paper.

II. MODIFIED TERNARY JACKET MATRICES

Let w = ¢2™/3 be a primitive cubic root of unity, and Q(w)
the cyclotomic field obtained from the field of rational numbers
@ by enjoining of w. The field Q{w) is a quadratic extension of
@, and the minimal polynomial of w over () is

f@y=2*+z+1. e))

The elements 1, w form a basis of Q (i) over @, so any o € Q(w)
can be uniquely written as a linear combination o = a + bw of
the basis elements 1 and w with coefficients a, b € Q.

Let Z be the ring of rational integers. In this paper, we work
in the ring Z|[w] of algebraic integers of Q(7). The elements of
Z[w] are algebraic integers of the form oo = a + bw, where
a,b € Z. The ring Z[w] contains the multiplicative cyclic group
G = {1,w,w?} of order 3.

Consider the Jacket matrix

1 1 1
J=1 1 w w? 2)
1 w? w

and then use the elements of J to compose a new matrix M as
follows

1 1
M1 = 1 w (3)
w 1

The Jacket matrix J in (2) is a square and symmetric matrix
and JJ* = nl where J* is the Hermite transpose of J. We ex-
tend this property to a new nonsquare and nonsymmetric matrix
M. M, is similar to J in many aspects which will be shown by
(10) and property 2.1. However, M is not a Jacket matrix. It is
a matrix obtained from the Jacket matrix in (2).

We define a modified ternary matrices M,,, and M,,,, form =
2,3, - -, respectively by the relations

Mm—l Mm—l
M, =M ® Mm—l = Mm—l WM 1 (4)
wWwMp_1 Mpn_a
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and

Mo,

wM,, . 5)
WM,

M, =

Clearly, M,, and M,, are 3™ x 2™ and 3™+ x 2™ matrices,
respectively, with entries from the cyclic group G =< w >, If

. 1 1 w?
M1:<1w2 1) (6)

is the Hermite transpose of M, we set

2 1+w? 14 w?
14w 2 W+ w? )]
14w w+w? 2

Dy = My M} =

Taking into account that 1 + w + w? = 0, we can rewrite Dy
in the form

2 —Ww —w
D, = w? 2 -1 . (8)
—w? -1 2

It is easy to see that D), is a self-conjugate complex matrix, that
is l))lk = D1.
Finally, we defined complex self-conjugate matrices D,,,, for

m = 2,3, -, recursively by
Dy, = D1 ® Dy
2Dy, —wDp 1 —wDpy,
=| —wDpny 2Dy -Dpy | 9
*WQDmv—l _Dmfl 2Dm—1
Since M1 M7 = Dy, it follows that

M M = D,,. (10)

The last relation show that the matrices M,,, form = 1,2, -,
do not fall into the class of Jacket matrices. On the other hand,
itis easy to see, using induction on m, that the following holds.

Proposition 1: Let D,, = (0%;). For any m > 1 we have
D}, = D,,. The entries 8 = ay; + bgyw of D,, are algebraic
integers form the ring Z[w]. The diagonal elements 6y, of D,,
all are equal to 2™, and the first coefficients ay; of the entries
611 lying outside of the diagonal do not exceed 2™ 1.

The above Proposition and relations (10) show that the mod-
ified matrices M, in many aspects are very similar to the cor-
responding Jacket matrices. This fact provides a very easy and
sufficiently fast decoding algorithm for the codes C7, and C’;‘%,
described below in Section IV.

III. MODIFIED TERNARY JACKET CODES

Let M,,, and M,, be modified ternary Jacket matrices defined
as above. A modified ternary Jacket code C7, is defined as the
set of all columns of the Hermite transpose M, of M,,. The
columns of M7 can be indexed by the integers from 0 to
3™ — 1. Similarly, a modified ternary Jacket code C?* is the
set of all columns of the Hermitian transpose M of the ma-
trix M,,. The columns of M > can be indexed by the integers

from 0 to 3™ ! — 1. Tt is clear that %, and C*, are nonlinear

(2™,3™.d) and (2™,3™T1, d) codes, respectively. Let us find
the minimum Hamming distances d of the codes C'%, and C"*,.

Theorem 2: The minimal Hamming distances d of the codes
Cr, and C, is equal to 2™ 1.

Proof: 1t is clear that the minimal Hamming distance of

Cr, and C7, are equal to the minimum distance between distinct
rows of the matrices M, and M,,, respectively.

To prove that this minimal distance is 2!, we use induction
in m. The statement is clearly true for m = 1. Let now m > 2.
Suppose that the minimum Hamming distance between distinct
rows of M,,_; is equal to 22 and prove that the minimum
Hamming distance between distinct rows of M., equals 2™~ 1.
Write

Mm—l Mm—l
My, = Mm—l WMm—l
WMmfl Mmfl

and consider the following submatrices
MOY = (M1 My—1), MY = (Myy_y WM, 1)

and

M(W D= (WMm lvafl)

of the matrix M,,. By the induction hypothesis, the minimum
distance between distinct rows of M,, 1 is equal to 272,
Consider the matrix M., 1 as an ordered set of its rows. If
(ay,ax) and {a;, a;) are two distinct rows of M,;,,_1(1, 1), then
the Hamming distance between (ay,ay) and (a;,a;) equals
d(ay, a;) + d(ag, a;) where d(ay,a;) is the Hamming distance
between two distinct rows ay and a; of the matrix M, 1. This
shows that the minimum Hamming distance between distinct
rows of M, a, 11) is equal to 2™~ 1 . Similarly, the minimum Ham-
ming distance between distinct rows of each matrix M (%) and
M1 is equal to 2. Now we proceed as follows.

(1) First we show that the minimum Hamming distance be-
tween any two rows of the submatrices M, 1 11) and M, €, 1) is
at least 2™ 1. Let (ag, ax) and (a;, wa;) be two arbltrary rows
of Mﬁnl’v) nd Mﬁl 1), respectively. If [ = £, then the Ham-
ming distance between (ax, ax) and (a;,wa;) is at least 2™~ 1,
Let now [ # k. The Hamming distance between (ay, ax) and
(a1, way) equals d(ay, a;) + d(ay,wa;). Using the triangle in-
equality

day,war) < d{ay, ag) + d(ag, way)

we find that the Hamming distance between (ay,ar) and
(aj,way) is at least d(a;, wa;) = 2™~'. Thus, the minimum
Hamming distance between any two rows of an 1, respec-

tively, is at least 2™~ 1. Similarly, the minimum Hamming dis-

tance between the rows of M, (1, 1> and M“ 71) , respectively, is at

least 2™ — 1.

(i) Now we prove that the minimum Hamming distance be-
tween any two rows of the submatrices M, S ’w> and M,” w, 1) again
is at least 2!, Consider two arbitrary element% (ak7 way) €

]W( 1> and (way, a7) € M,(;J 11) If | = k then the Hamming
distance between (ag,way) and (way, ap) is at least 21, If

[ # k, we have

d(wal, al) < d(wal, (Lk) -+ d(ak, wu,l)
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and since d(way, ax) = d(ax,wa;) and d(ax, wa) = d(way, a;)
then
d(way, a) < d(ag,wa;) + d(wag, ar).

Thus, the Hamming distance between (ax, wag) and (way, a;) is
at least
d(way, a)) = 2™ L,
This completes the proof. 0
Corollary 1: The nonlinear ternary codes C%, and C7, have
parameters (2™,3™, 2™~} and (2™,3™%1 2™~1), respec-
tively.

IV. ENCODING ALGORITHM

If we would like to transmit symbols 0, 1, and 2, we can trans-
form these symbols to 1,w, and w? using the following one-to-
one map

bk = wik .

(b

In fact, the multiplicative cyclic group G = {1,w,w?} of or-
der 3 is isomorphic to the set {0,1,2} with modulo 3. Each
modified ternary Jacket code C, carries m symbols of informa-
tion. Given the input information sequence (ig, 41, -, i(m—1))
where i, € {0,1,2}, for k = 0,1,---,m — 1. We obtain
(bo, b1, -+, b(m—1)) from the one-to-one map (11). The encod-
ing procedure of C;, includes two steps:

Given by, calculate aj with the fomular

agz{

and calculate a{k) from a(k_l) recursively with the formula

afk+1) = {

where 7 denotes the transpose of a vector. Actually, given the
information sequence (g, %1, - -, m_1), the result code-vector
a(m_l) € C7, is the ith column of M}, where i = 49 + 913 +
PR i(m-1)3m.'1-

Let us illustrate the encoding process by using an example.
Assume m = 2 and the information sequence is (ip,i1) =
(0,2). From (3) and (4), we have the following ternary matrix

(l,bg)‘r, by € {1,(/.}}

(w27 1)77 by = w? (12)

(ak)b%k+1)ak> y bagy € {Lw}

13
(Pax,ax)” 4

bty =w

T 1 1 1

1 w 1 w

w 1 w 1

1 1l w w
My=1 1 w w W?

w 1 Ww?

W ow

€
>

D
£ ot
— g = &

€
€

and its Hermitian transpose

2

[
()
[ V)

1 1 w 1 1w w w w
M= 1 w2 1 1 w1 W w W?
2701 1 w? oW oW w11 WP

1 w? 1 w w o w? 1 w? 1

From (11), we get (bg,by) = (1,w?). With (12) and by = 1,
we get ag = (1,1). Then, with (13) and b; = w?, ap = (1,1),
we get the finally code word a; = (w?,w?, 1,1). Actually, from
i = 1g 4+ 213 = 6, we can also see that the final code word is the
6th column of M7, which confirms our encoding algorithm.
Each modified ternary Jacket code C, carries (m + 1)
symbols of information. Given the input information sequence
(b0, b1, b1y, bm) where b; € {l,w,w?}, for i =
0,1, --,m. The encoding procedure of C%, includes two steps.
First, code-vector a(’m_l) can be obtained recursively based on

(12) and (13). Second, the code-vector a], € C’;l can be ob-
tained by .

ap, = bmaly, 1) (14)
where by, is the complex conjugate of by, Then, the result code-
vector al, € C} is the ith column of M, where i = ig + %13 +
o i —1) 3™ 4+ i 3™

V. DECODING ALGORITHM

The codes C*, and C?*, admit an effective decoding proce-
dure. Decoding algorithms for Cj;, and (7}, are very similar
and we restrict ourseives by description of the decoding algo-
rithm for the code C%,. Let M,, = (a;;), 1 < ¢ < 3™,
1 < 7 < 2™ be amodified 3™ x 2™ Jacket matrix, a transmitted
code-vector @] = (Gi,1,- -, @s,2m )" € Oy, , and a received vec-
tor & = (&1, -, Ci2m ) that differs from &7 in ¢ positions. We
assume that the noisy channel can transform each symbol a; ;
from the alphabet G = {1,w,w?} to some another symbol ¢; ;
from G with the same small probability p* and leaves 4, ; fixed
with probability 1 — p*.

To restore the transmitted vector @; from received vector ¢7,
there are three steps in the decoding process. First, we multiply
the matrix M,, by ¢] and then resulting vectors s7 = M,,c].
Since the entries of M., and the components of @] are elements
of the cyclic group G = {1,w,w?}, the resulting vector s7 =
(81, ++,83m )7 is a vector of size 3™, whose components si,, for
1 < k < 3™, are elements of the ring Z[w]. This means that
each component sy, is a linear combination

Sk = s,E,O) + s,(el)w

of elements 1 and w with coefficients s,(co),sg) € Z.

Secondly, to correct possible errors we example the compo-
nents of the syndrome s™ = (sq,---, s3=)". If the number of
distorted symbols in the received vector is

L < [d—l} _ {2"‘ 1—1}
. 2 2

then among the components s, 1 < k < 3™, of the vector s, we
choose the unique one s; whose first coefficient 520) is strictly
greater than the first coefficient of any other component s of
s. We notice that if no error occurs then s; € Z and s; has the
maximal possible value 3™.

Thirdly, we decode €] as the transmitted vector a] =
(@i, @,2m)7. In other words, the received vector ¢; is de-

coded as the complex conjugate a; of the ith row of the modified
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ternary Jacket matrix M,,,. Then, the input information sequence
i8 (40,81, "+, i(m—1)) Where i = ip + 113 4 - - 4 i(_1)3™ L.
The decoding process is finished. It is clear that the code C7,
corrects t < [451] = {Qm;_l} errors.

Similarly, the code C,, with parameters (2™, 3m+1 gm-1)
2m—1 g
2

also corrects any ¢t < { ] errors.

VI. AN EXAMPLE

Again, we consider the matrix M> and its Hermitian transpose
M.
In view of (10), we have

MyM; = Dy

where Dy is shown at the top of next page.

Let now
My M, « * 2 7%
My= | My wMy | A= ( be WO )
w]\42 M2 2 W 2 2
and
2M2 —wMz —wM2
D; = —w2M2 2M2 —M2
—w2M2 —M2 2M2
so that
MsM3 = Ds
and then we have the following 27 x 8 matrix
1 1 1 1 1 1 1 1
1 w 1 w 1 w 1w
w 1 w 1 w 1 w 1
1 1 w w 1 1 w w
1 w w w1l w w W
w 1l W ow w1 oW ow
woow 1 1 w w 1 1
w w1l w o ow w1l w
W W w 1 w? w w 1
1 1 1 1l w w w w
1 w 1 w w W ow W
w 1w 1 Ww? w w? ow
1 1 v w w w w w?
Mz = 1 w w W w w? w1
w 1 w? w w w 1 w?
w w 1 1 w? W w w
w w1l w o w? 1w w?
w w w 1 1 w? w? w
w o ow w w1 1 1 1
w ow ow w1l w 1 w
W ow oW ow w1 w1
wo o ow w? ow? o1 1 w w
wo w2 ow? o1 1 w w w?
wow 1 w? w1 W ow
W oW w ow ow o ow 1 1
Wl w o w? ow w1l ow
1 w? W w W ow w 1

15

The ternary code C consists of the columns of 3% x 23 matrix
M} and has parameters (23,3%,22). Let us show that the code
C3 corrects single errors. Consider a code-vector a” € C3, say

" = (W 1,w? 1,0 1,02 1)7
and assume that this vector is sent through a noisy channel. Let
=W 1,0 1,03 1wk w)T

be the received vector which differs from a7 in the last position.
To correct the error, we multiply M3 by ¢™ and then take into
account the relation

l+wtw?=0.
As a result, we obtain
Mzc™ =57
where

s={-1-3w,-5-2w, T+ w,1— 2w, —w,3+ 2w,
14+w,-3—4w,3+bw,1 — 2w, —w,3+ 2w, 3 + 2w,
-1,243w,—1,24 3w, —w,2,—-1,1 + w, -3 — 4w,
345w, —w,2,—1,2w, ~1 — 3w, -1+ w)

The components of the syndrome s” are elements

S; = 82(»0)

+ sgl)w
of the ring Z[w|. Since the first coefficient séo) = 7 of the el-
ement 7 + w in 3rd position of s7 is strictly greater than the
first coefficient of any other component of s™, we decode the re-
ceived vector ¢ as the vector a” = (w?, 1,w? 1,02, 1,w?,1)7
from the 3rd column of the matrix M3

Now we assume that a” = (w,w,w? w? w? w? 1,1)" is a
transmitted code-vector, and ¢” = (w,w,w, w?, w? w? 1,1)7 is
the received vector. Multiplying the matrix M3 by ¢ we obtain

Mszc™ = 57
where

s=(-1,1+w,-2-2w, 24w, -3 —w,—w,1 - 2w,
342w, —w, 1 +4w, 2w, -3 —w, —w,—1,2, -3 + 2w,
2w, -4 — 3w, -2 - dw,—w,3 —w,—3 —w,—1 - 3w, —1,
6 —w,2+3w,5+ 3w)
Again, the first coefficient sg%) = 6 of the element 6 — w in
25th position of s7 is strictly greater than the first coefficient of
any other component of s7, so we decode the received vector ¢”
as the vector a” = (w,w,w?, w? w? w? 1,1)7 from the 25th
column of the matrix M. In other words, we decode ¢” as the
complex conjugate of the 25th column of the matrix M.

Similarly, it is easy to see that the ternary code é; with pa-
rameters (22, 34, 22) also corrects any single errors.
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22 2w 2w 2w
2w? 22 -2 1
—2uw? =2 22 1
—-2w? 1 1 22
D, = w 2w w? —2u2
w w? -2 —2uw?
—2w? 1 1 -2
w —2uw? w? w?
w w? —2w2 w?

w? W 2w w? W2
2w w 1 2w  w
w —2w 1 w —2w
2w 2w -2 w w
22 -2 w? -2 1
-2 22 w 1 -2
w w 22 2w 2w
-2 1 =2 22 -2
1 -2 —2w? =2 22

VII. CONCLUSION

In this paper, we consider a family {M,,,},m = 1,2,-.-, of
modified ternary Jacket matrix of order 3™. We construct two

families {C;%, } and {C,} of nonlinear 3-ary codes derived from
Kronecker powers M,,, =

MP™ of the modified ternary Jacket
Matrix. These codes are close to the Plotkin bound and have nice
parameters and very easy encoding and decoding procedures.
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