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ON THE INITIAL VALUES OF SOLUTIONS OF

A GENERAL FUNCTIONAL EQUATION

Jae-Young Chung and Dohan Kim

Abstract. We consider a general functional equation with time variable
which arises when we investigate regularity problems of some general
functional equations. As a result we prove the regularity of the initial

values of the solutions. Also as an application we prove the regularity of
solutions of some classical functional equations and their distributional
versions.

1. Introduction

In this paper, as a unified approach we investigate the initial values as t, s→
0+ of the solutions Φ : R2n × (0,∞)2 → C, Fk, Gk : Rn × (0,∞) → C, k =
1, 2, . . . ,m, of the functional equation

(1.1) Φ(x, y, t, s) =
m∑

k=1

Fk(x, t)Gk(y, s), x, y ∈ Rn, t, s > 0,

where Φ, Fk, Gk, k = 1, 2, . . . ,m, are smooth functions of x, y for each t, s > 0
with the conditions (2.1) ∼ (2.4) in the next section.

The equation (1.1) arises when we study the functional equation of J. M.
Speiser, H. J. Whitehouse and N. J. Berg [15]

(1.2) f(x+ y) + g(x− y) =
m∑

k=1

fk(x)gk(y)

in the space of distributions and hyperfunctions (see Section 3). The equation
(1.2) has a significant application in signal processing. Furthermore, many im-
portant functional equations such as the Cauchy equations, exponential equa-
tions, quadratic functional equation, d’Alembert functional equation, trigono-
metric functional equations are special cases of the equation. The regularity
of solutions of the functional equation (1.2) and its generalization are well
known. As a matter of fact, under the natural assumption that {f1, . . . , fm}
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and {g1, . . . , gm} are linearly independent, it was shown in [2] that the locally
integrable solutions (which was weakened to Lebesgue measurability by Jarai
[13]) f, g, fk, gk : Rn → C, k = 1, 2, . . . ,m, of the equation (1.1) are smooth
functions in which a usual convolutional technique was used. Convolving in
(1.2) some regularizing functions in both variables x and y as in [4, 5, 7], which
is a different approach as in [1, 2], the equation (1.2) and its generalization in
[2] are converted to the equations of the form (1.1).

As an application, we consider the regularity of the solutions of the following
distributional version of the equation (1.1),

(1.3) u ◦ L1 + v ◦ L2 =
m∑

k=1

uk ⊗ vk,

where u, v, uk, vk ∈ G′(Rn), and ◦ denotes the pullback, ⊗ denotes the tensor
product of generalized functions, and L1(x, y) = x+ y, L2(x, y) = x− y.

2. Initial values of solutions of (1.1)

We impose the following conditions on the functions Φ, Fk, Gk, k=1, 2, . . . ,m,
in the equation (1.1): There exists t1 > 0 such that

(2.1) {F1(·, t1), . . . , Fm(·, t1)}
is linearly independent, and there exists s1 > 0 such that

(2.2) {G1(·, s1), . . . , Gm(·, s1)}
is linearly independent; for each fixed y ∈ Rn and s > 0,

lim
t→0+

Φ(x, y, t, s)(2.3)

is a smooth function of x, and for each fixed x ∈ Rn and t > 0,

lim
s→0+

Φ(x, y, t, s)(2.4)

is a smooth function of y.

From now on, we assume the condition (2.1) ∼ (2.4). Now we prove that
the initial values
(2.5)
ϕ(x, y) = lim

t, s→0+
Φ(x, y, t, s), fk(x) = lim

t→0+
Fk(x, t), gk(y) = lim

s→0+
Gk(y, s).

of the solutions of the functional equation (1.1) are smooth functions for k =
1, 2, . . . ,m.

Theorem 2.1. The initial values ϕ(x, y) and fk(x), gk(y), k = 1, 2, . . . ,m, of
the solutions Φ, Fk, Gk, k = 1, 2, . . . ,m, of the equation (1.1) smooth functions
satisfying the functional equation

(2.6) ϕ(x, y) =
m∑

k=1

fk(x)gk(y).
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Proof. We first prove that fk(x) = limt→0+ Fk(x, t) are smooth functions for
all k = 1, 2, . . . ,m. We use the mathematical induction on m. For m = 1, we
can choose y1 ∈ Rn such that G1(y1, s1) := b1 ̸= 0 since {G1(·, s1)} is linear
independent. Thus, it follows from the equation (1.1) and the condition (2.3)
that

(2.7) f1(x) = b−1
1 lim

t→0+
Φ1(x, y1, t, s1)

is a smooth function. Assume that the result holds form = p, that is, f1, . . . , fp
are smooth functions provided that the conditions (2.2) and (2.3) hold for
m = p. We now prove that the result holds for m = p+ 1. Let

(2.8) Φ(x, y, t, s) =

p+1∑
k=1

Fk(x, t)Gk(y, s)

and assume that the conditions (2.2) and (2.3) hold for m = p + 1. By the
condition (2.2), we may choose yp+1 ∈ Rn such that Gp+1(yp+1, s1) := bp+1 ̸=
0. Then it follows from (2.8) that

(2.9) Fp+1(x, t) = b−1
p+1

(
Φ(x, yp+1, t, s1)−

p∑
k=1

bkFk(x, t)

)
,

where bk = Gk(yp+1, s1), k = 1, . . . , p. Putting (2.9) in (2.8) we have

(2.10) Φ∗(x, y, t, s) =

p∑
k=1

Fk(x, t)G
∗
k(y, s),

where

Φ∗(x, y, t, s) = Φ(x, y, t, s)− b−1
p+1Φ(x, yp+1, t, s1)Gp+1(y, s),(2.11)

G∗
k(y, s) = Gk(y, s)− b−1

p+1bkGp+1(y, s), k = 1, . . . , p.(2.12)

In view of (2.11) and (2.12) it is easy to see that Φ∗ and G∗
k, k = 1, 2, . . . , p,

satisfy the conditions (2.2) and (2.3), respectively. Thus, by the induction
hypothesis that the initial values

fk(x) = lim
t→0+

Fk(x, t), k = 1, 2, . . . , p

are smooth functions, it follows from (2.9) that

fp+1(x) := lim
t→0+

Fp+1(x, t) = b−1
p+1 lim

t→0+
Φ∗(x, yp+1, t, s1)− b−1

p+1

p∑
k=1

bkfk(x)

is a smooth function since Φ∗ satisfies (2.3).
Changing the roles of Fk and Gk for k = 1, 2, . . . ,m, we obtain, for each

k = 1, 2, . . . ,m,

(2.13) gk(y) := lim
t→0+

Gk(y, t)
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is a smooth function. Finally, letting t, s → 0+ in (1.1) we get (2.6). This
completes the proof. □

If the functions Φ, Fk, Gk, k = 1, 2, . . . ,m, in Theorem 1.1 are independent
of the parameters t and s, Theorem 1.2 can be stated as follows.

Corollary 2.2. Let Φ(x, y) be a smooth function of each variable, and let
{F1, . . . , Fm} and {G1, . . . , Gm} be linearly independent. Then the solutions
Fk, Gk, k = 1, 2, . . . ,m, of the equation

(2.14) Φ(x, y) =

m∑
k=1

Fk(x)Gk(y)

are smooth functions.

Using the above results we obtain the following result in [2].

Theorem 2.3. The locally integrable solutions f, g, fk, gk : Rn → C, k =
1, 2 . . . ,m, of the equation

(2.15) f(x+ y) + g(x− y) =

m∑
k=1

fk(x)gk(y)

are smooth functions under the natural assumptions that {f1, . . . , fm} and
{g1, . . . , gm} are linearly independent.

Proof. We choose a smooth function ψ on Rn such that

ψ(x) ≥ 0 for all x ∈ Rn,

suppψ ⊂ {x ∈ Rn : |x| ≤ 1 },∫
Rn

ψ(x) dx = 1

and let

Ψ(x, y, t, s) := t−ns−nψ
(x
t

)
ψ
(y
s

)
, t, s > 0.

Convolving Ψ(x, y, t, s) in both sides of (2.15) as a function of x and y we have

(2.16) (f ∗ψt ∗ψs)(x+ y) + (g ∗ψt ∗ψs)(x− y) =

m∑
k=1

(fk ∗ψt)(x)(gk ∗ψs)(y).

Now we let

Φ(x, y, t, s) = (f ∗ ψt ∗ ψs)(x+ y) + (g ∗ ψt ∗ ψs)(x− y),(2.17)

Fk(x, t) = (fk ∗ ψt)(x),(2.18)

Gk(y, s) = (gk ∗ ψs)(y).(2.19)

Then it is easy to see that Φ, Fk, Gk, k = 1, 2 . . . ,m, satisfy the conditions
(2.1) ∼ (2.4). Thus it follows from Theorem 2.1 that the initial values

f̃k(x) := lim
t→0+

Fk(x), g̃k(x) := lim
s→0+

Gk(y), ϕ̃(x, y) := lim
t,s→0+

Φ(x, y, t, s)
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are all smooth functions. Now, replacing x + y by u, x − y by v and letting
t, s→ 0+ in (2.17) we have

(2.20) ϕ̃

(
u+ v

2
,
u− v

2

)
= f̃(u) + g(v)

for all u ∈ Rn and for all v ∈ Rn such that limt→0+(g ∗ ψt)(v) = g(v), where

f̃(u) = lim
t,s→0+

(f ∗ ψt ∗ ψs)(u).

Thus, in view of (2.20), f̃ is a smooth function and so is g̃(x) := limt,s→0+(g∗
ψt ∗ ψs)(x). Letting t, s→ 0+ in (2.16) we have

(2.21) f̃(x+ y) + g̃(x− y) =
m∑

k=1

f̃k(x)g̃k(y).

Note that there exists Ω ⊂ Rn with the Lebesgue measure m(Ωc) = 0 such
that

f̃(x) = f(x), g̃(x) = g(x), f̃k(x) = fk(x), g̃k(x) = gk(x)

for all x ∈ Ω and k = 1, 2, . . . ,m. For given z ∈ Rn, choose ω ∈ (z−2Ω)∩(2Ω−
z) ∩Ω and put x = 1

2 (z + ω), y = 1
2 (z − ω), where z − 2Ω = {z − 2ω : ω ∈ Ω},

2Ω− z = {2ω − z : ω ∈ Ω}. Then we have

(2.22) f̃(z) + g(x− y) =
m∑

k=1

fk(x)gk(y),

since x, y, x− y ∈ Ω. In view of (2.15) and (2.22) we have f̃(x) = f(x) for all
x ∈ Rn. Similarly we can show that g̃(x) = g(x) for all x ∈ Rn. Thus we have
proved that f and g are smooth functions. Finally, applying Corollary 2.2 we
obtain that fk, gk, k = 1, 2, . . . ,m are smooth functions. This completes the
proof. □

Remark. As a generalization of the equation (1.2), Aczél and J. K. Chung
introduced the following functional equation [2]

(2.23)
l∑

j=1

hj(ajx+ bjy) =
m∑

k=1

fk(x)gk(y),

where hj , fk, gk : R → C, aj , bj ∈ R, ajbj ̸= 0, aibj ̸= ajbi for all i ̸= j, i, j =
1, . . . , l, k = 1, . . . ,m, and {g1, . . . , gm} and {h1, . . . , hm} are linearly indepen-
dent.

Using the same approach as in the proof of Theorem 2.3, we obtain the
equation

(2.24)
l∑

j=1

(hj ∗ ψt,aj ∗ ψs,bj )(ajx+ bjy) =
m∑

k=1

(fk ∗ ψt)(x)(gk ∗ ψs)(y)
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instead of (2,16), and the equation (2.17) is replaced by

(2.25) Φ(x, y, t, s) =

l∑
j=1

(hj ∗ ψt,aj ∗ ψs,bj )(ajx+ bjy),

where ψt,a(x) = a−1ψt(a
−1x) for a = aj , bj , j = 1, 2, . . . , l. Now, as in [5],

letting s → 0+ in (2.25), replacing x by a−1
i (x− biy), multiplying ψs(y), inte-

grating with respect to y, and letting t→ 0+ we have

(2.26) h̃i(x) := −
∑
j ̸=i

(hj ∗ ψs,cj )(x) +

m∑
k=1

∫
ϕ̃(a−1

i x− a−1
i biy, y)ψs(y) dy,

where cj = a−1
i (biaj − aibj) for all 1 ≤ j ≤ l, j ̸= i, h̃j(x) = limt→0+(hj ∗

ψt,aj
)(u) and ϕ̃ is defined as in Theorem 2.3. Thus h̃j is smooth function for

each j = 1, 2, . . . , l. Letting t, s→ 0+ in (2.24) we have

(2.27)
l∑

j=1

h̃j(ajx+ bjy) =
m∑

k=1

f̃k(x)g̃k(y).

Let Ω ⊂ R such that Lebesgue measure m(Ωc) = 0 and for all x ∈ Ω,

f̃k(x) = fk(x), g̃k(x) = gk(x), h̃j(x) = hj(x), k = 1, 2, . . . ,m, j = 1, 2, . . . , l.

For each fixed i, 1 ≤ i ≤ l, and z ∈ R, choose

ω ∈
∩

1≤j≤l, j ̸=i

[
2aibi

ajbi − aibj
Ω−

(
ajbi + aibj
ajbi − aibj

)
z

]
∩ Ω

and put in (2.23),

x =
1

2ai
(z + ω) , y =

1

2bi
(z − ω) ,

where for α, β ∈ R we denote by αΩ + β = {αω + β : ω ∈ Ω}. Then it is
obvious that aix + biy = z and x, y, ajx + bjy ∈ Ω for all 1 ≤ j ≤ l, j ̸= i.
Thus we have

(2.28) hi(z) +
∑
j ̸=i

h̃j(ajx+ bjy) =
m∑

k=1

f̃k(x)g̃k(y).

In view of (2.23) and (2.28), we have hi = h̃i. Thus hj are smooth functions
for all j = 1, 2, . . . , l. Thus we have the following result.

Theorem 2.4. The locally integrable solutions hj , g, fk, gk : Rn → C, j =
1, 2, . . . , l, k = 1, 2 . . . ,m, of the equation (2.23) are smooth functions under
the conditions that {f1, . . . , fm} and {g1, . . . , gm} are linearly independent.

Examples. The following functional equations are typical examples of the
equation (1.2).

f(x+ y) + f(x− y)− 2f(x)− 2g(y) = 0,(2.29)
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f(x+ y) + f(x− y)− 2f(x)f(y) = 0,(2.30)

f(x+ y) + f(x− y)− 2f(x)g(y) = 0,(2.31)

f

(
x+ y

2

)
− f

(
x− y

2

)
− g(x)g(y) = 0,(2.32)

f(x− y)− f(x)f(y)− g(x)g(y) = 0,(2.33)

where f, g : Rn → C. As a consequence of our result the Lebesgue integrable
solutions of the equations (2.29) ∼ (2.33) are smooth functions. Now, it can
be verified that the smooth solutions f, g of the equations (2.29) ∼ (2.33) are
given, respectively, by

g(x) =
∑

1≤j≤k≤n

ajk xjxk,(2.34)

f(x) =
∑

1≤j≤k≤n

ajk xjxk +
n∑

j=1

bj xj + d,

f(x) = cos(a1x1 + · · ·+ anxn),(2.35)

g(x) = cos(a1x1 + · · ·+ anxn),(2.36)

f(x) = c1 cos(a1x1 + · · ·+ anxn) + c2 sin(a1x1 + · · ·+ anxn),

g(x) = c sin(a1x1 + · · ·+ anxn),(2.37)

f(x) = c2 sin2(a1x1 + · · ·+ anxn) + d,

or

g(x) = a1x1 + · · ·+ anxn,

f(x) = (a1x1 + · · ·+ anxn)
2 + d,

g(x) = sin(a1x1 + · · ·+ anxn),(2.38)

f(x) = cos(a1x1 + · · ·+ anxn),

where x = (x1, . . . , xn) and all the coefficients are complex numbers.

3. Functional equations in Gelfand-Shilov generalized functions

We briefly introduce the space G(Rn) of generalized function of Gelfand and

Shilov. Here we use the following notations: |x| =
√
x21 + . . .+ x2n, |α| =

α1 + · · · + αn, α! = α1! · · ·αn!, x
α = xα1

1 · · ·xan
n and ∂α = ∂α1

1 · · · ∂αn
n for

x = (x1, . . . , xn) ∈ Rn, α = (α1, . . . , αn) ∈ Nn
0 , where N0 is the set of non-

negative integers and ∂j =
∂

∂xj
.

Definition 3.1 ([11]). We denote by G or G(Rn) the Gelfand space of all
infinitely differentiable functions φ in Rn such that

∥φ∥h,k = sup
x∈Rn, α, β∈Nn

0

|xα∂βφ(x)|
h|α|k|β|α!1/2β!1/2

<∞
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for some h, k > 0. We say that φj −→ 0 as j → ∞ if ||φj ||h,k −→ 0 as j → ∞
for some h, k, and denote by G′ the dual space of G and call its elements Gelfand
generalized functions.

It is known that the space G(Rn) consists of all infinitely differentiable func-
tions φ(x) on Rn which can be extended to an entire function on Cn satisfying

(3.1) |φ(x+ iy)| ≤ C exp(−a|x|2 + b|y|2)

for some a, b, C > 0(see [11]). In view of (3.1) it is easy to see that the
n-dimensional heat kernel Et(x) given by

Et(x) = (4πt)−n/2 exp(−|x|2/4t), t > 0

belongs to the Gelfand space G(Rn) for each t > 0.

We briefly introduce some basic operations on the spaces of the generalized
functions.

Definition 3.2. Let uj ∈ G′(Rnj ) for j = 1, 2, with n1 ≥ n2, and let λ :
Rn1 → Rn2 be a smooth function such that for each x ∈ Rn1 , the Jacobian
matrix ∇λ(x) of λ at x has rank n2. Then there exists a unique continuous
linear map λ∗ : G′(Rn2) → G′(Rn1) such that Λ∗u = u◦λ when u is a continuous
function. We call λ∗u the pullback of u by λ and often denoted by u ◦ λ.

In particular if λ is a diffeomorphism (a bijection with λ, λ−1 smooth func-
tions) the pullback u ◦ λ can be written as follows:

(3.2) ⟨u ◦ λ, φ⟩ = ⟨u, (φ ◦ λ−1)(x)|∇λ−1(x)|⟩.

Definition 3.3. Let uj ∈ G′(Rnj ), j = 1, 2. Then the tensor product u1 ⊗ u2
of u1 and u2 is defined by

⟨u1 ⊗ u2, φ(x1, x2)⟩ = ⟨u1 , ⟨u2 , φ(x1, x2)⟩ ⟩, φ(x1, x2) ∈ C∞
c (Rn1 × Rn2).

The tensor product u1 ⊗ u2 belongs to D′(Rn1 × Rn2).

For more details of pullbacks and tensor products of distributions we refer
the reader to Chapter VI of [12].

Now we consider the functional equation

(3.3) u ◦ L1 + v ◦ L2 =
m∑

k=1

uk ⊗ vk,

where u, v, uk, vk ∈ G(Rn), and ◦ denotes the pullback, ⊗ denotes the tensor
product of generalized functions, and L1(x, y) = x+ y, L2(x, y) = x− y.

Theorem 3.4. The solutions u, v, uk, vk ∈ G(Rn), k = 1, . . . ,m, of the equa-
tion (3.3) are smooth functions satisfying the classical functional equation (1.1).
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Proof. We employ the heat kernel Et defined by

Et(x) = (4πt)−n/2 exp(−|x|2/4t), t > 0.

Let u ∈ G(Rn). Then, for each t > 0, (u ∗Et)(x) := ⟨uy, Et(x− y)⟩ is a smooth
function of x. Convolving the tensor product Et(x)Es(y) in both sides of (3.1)
we have

[(u ◦ L1) ∗ (Et(x)Es(y))](ξ , η) = ⟨u ◦ L1 , Et(ξ − x)Es(η − y)⟩

= ⟨u ,
∫
Et (ξ − x+ y)Es(η − y) dy⟩

= ⟨u , (Et ∗ Es)(ξ + η − x)⟩
= ⟨u , Et+s(ξ + η − x)⟩
= (u ∗ Et+s)(ξ + η).

Similarly we have

[(v ◦ L2) ∗ (Et(x)Es(y))](ξ , η) = (v ∗ Et+s)(ξ − η),

and

[(uk ⊗ vk) ∗ (Et(x)Es(y))](ξ, η) = (uk ∗ Et)(ξ)(vk ∗ Es)(η)

for all k = 1, . . . ,m. Thus the equation (3.1) is converted to the functional
equation of the form

(3.4) Φ(x, y, t, s) =
m∑

k=1

Uk(x, t)Vk(y, s),

where

Φ(x, y, t, s) = (u ∗ Et+s)(x+ y) + (v ∗ Et+s)(x− y),(3.5)

Uk(x, t) = (uk ∗ Et)(x),(3.6)

Vk(x, t) = (vk ∗ Es)(y)(3.7)

for all k = 1, 2, . . . ,m. Applying Theorem 2.1 we obtain the result. □

Combined with the result of Aczél and Chung [2] we have the following
corollary as a consequence of the above result.

Corollary 3.5. Every solution u, v, uk, vk ∈ G(R), k = 1, . . . ,m, of the equa-
tion (3.3) has the form of exponential polynomials

q∑
k=1

erkxpk(x),

where rk ∈ C and pk
′s are polynomials for all k = 1, 2, . . . , q.

Acknowledgment. The authors express their sincere gratitude to the ref-
eree for the useful comments on the paper. The first author was supported
by the Korea Research Foundation Grant(KRF) grant funded by the Korea



396 JAE-YOUNG CHUNG AND DOHAN KIM

Government(MEST)(No. 2009-0063887) and the second author was partially
supported by the Research Institute of Mathematics, Seoul National University.

References

[1] J. Aczél and J. Dhombres, Functional Equations in Several Variables, Cambridge Uni-
versity Press, Cambridge, 1989.

[2] J. Aczél and J. K. Chung, Integrable solutions of functional equations of a general type,
Studia Sci. Math. Hungar. 17 (1982), no. 1-4, 51–67.

[3] J. Chang and J. Chung, The stability of the sine and cosine functional equations in
Schwartz distributions, Bull. Korean Math. Soc. 46 (2009), no. 1, 87–97.

[4] J. Chung, A functional equation of Aczél and Chung in generalized functions, Adv.
Difference Equ. 2008 (2008), Art. ID 147979, 11 pp.

[5] , Stability of approximately quadratic Schwartz distributions, Nonlinear Anal. 67
(2007), no. 1, 175–186.

[6] , A distributional version of functional equations and their stabilities, Nonlinear

Anal. 62 (2005), no. 6, 1037–1051.
[7] J. Chung, S.-Y. Chung, and D. Kim, Generalized Pompeiu equation in distributions,

Appl. Math. Lett. 19 (2006), no. 5, 485–490.
[8] E. Y. Deeba, E. L. Koh, P. K. Sahoo, and S. Xie, On a distributional analog of a sum

form functional equation, Acta Math. Hungar. 78 (1998), no. 4, 333–344.
[9] E. Deeba, P. K. Sahoo, and S. Xie, On a class of functional equations in distribution,

J. Math. Anal. Appl. 223 (1998), no. 1, 334–346.
[10] E. Y. Deeba and S. Xie, Distributional analog of a functional equation, Appl. Math.

Lett. 16 (2003), no. 5, 669–673.
[11] I. M. Gelfand and G. E. Shilov, Generalized Functions. II, Academic Press, New York,

1968.
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