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DEFORMATIONS OF d/BCK-ALGEBRAS

Paul J. Allen, Hee Sik Kim, and Joseph Neggers

Abstract. In this paper, we study the effects of a deformation mapping
on the resulting deformation d/BCK-algebra obtained via such a defor-

mation mapping. Besides providing a method of constructing d-algebras
from BCK-algebras, it also highlights the special properties of the stan-
dard BCK-algebras of posets as opposed to the properties of the class of

divisible d/BCK-algebras which appear to be of interest and which form
a new class of d/BCK-algebras insofar as its not having been identified
before.

1. Introduction

J. Neggers and H. S. Kim introduced the notion of d-algebras which is an-
other useful generalization of BCK-algebras, and then investigated several re-
lations between d-algebras and BCK-algebras as well as several other relations
between d-algebras and oriented digraphs ([9]). After that some further aspects
were studied ([4, 6, 8]). As a generalization of BCK-algebras, d-algebras are
obtained by deleting two identities. Given one of these deleted identities related
identities are constructed by replacing one of the terms involving the original
operation by an identical term involving a second (companion) operation, thus
producing the notion of companion d-algebra which (precisely) generalizes the
notion of BCK-algebra and is such that not every d-algebra is one of these.
Recently, the present authors ([1]) developed a theory of companion d-algebras
in sufficient detail to demonstrate considerable parallelism with the theory of
BCK-algebras as well as obtaining a collection of results of a novel type.

In this paper we introduce the notion of deformation in d/BCK-algebras.
Using such deformations we are able to construct d-algebras fromBCK-algebras
in such a manner as to maintain control over properties of the deformed BCK-
algebras via the nature of the deformation employed. We also observe that
certain BCK-algebras cannot be deformed at all, leading to the notion of a
rigid d-algebra and consequently of a rigid BCK-algebra as well. Although
we have not done so here, it is clear that similar methods as we have used
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can be applied to other types of algebras related to these classes, such as
BCC/BCH/BCI-algebras etc. ([2, 3, 5, 11]).

2. Preliminaries

A d-algebra ([9]) is a non-empty set X with a constant 0 and a binary
operation “ ∗ ” satisfying the following axioms:

(I) x ∗ x = 0,
(II) 0 ∗ x = 0,
(III) x ∗ y = 0 and y ∗ x = 0 imply x = y

for all x, y ∈ X.

A BCK-algebra is a d-algebra X satisfying the following additional axioms:

(IV) (x ∗ y) ∗ (x ∗ z)) ∗ (z ∗ y) = 0,
(V) (x ∗ (x ∗ y)) ∗ y = 0

for all x, y, z ∈ X.

If X is a BCK-algebra, then it is well-known that

(VI) x ∗ 0 = x,
(VII) (x ∗ y) ∗ z = (x ∗ z) ∗ y

for all x, y, z ∈ X.

3. Deformations of d/BCK-algebras

Let (X, ∗, 0) be an algebra. A map φ : X → X is said to be a deformation
function of X if

(i) x ̸= 0 implies x ∗ φ(x) ̸= 0,
(ii) there exists a ∈ X such that a ∗ φ(a) ̸= a.

We call a a deformation point of X, and (X, ∗, 0) is said to be a deformation
algebra.

Note that if φ is a deformation function of d/BCK-algebra (X, ∗, 0) and a
is a deformation point of X, then a ̸= 0 and a ∗ φ(a) ̸∈ {0, a}.

Example 3.1. Let X := [0, 1] be the unit interval. Define a binary operation
“∗” on X by

x ∗ y := max{0, x− y}.
Then (X, ∗, 0) is a BCK-algebra. Define a map φ : X → X by φ(0) = 0
and φ(x) = 1

3x for any non-zero x in X. Then φ is a deformation function
of X, and hence (X, ∗, 0) is a deformation algebra. Note that a ∗ φ(a) =
max{0, a− φ(a)} = 2

3a ̸= a if a > 0. Hence the set of all deformation points is
(0, 1].
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Proposition 3.2. Let (X, ∗, 0) be a BCK-algebra and let φ be a deformation
function of X. If we define a binary operation on X by

x▽ y := (x ∗ y) ∗ φ(x ∗ y)

for any x, y ∈ X, then (X,▽, 0) is a d-algebra which is not a BCK-algebra.

Proof. Since (X, ∗, 0) is a BCK-algebra, x▽x = 0▽x = 0∗φ(0) = for any x ∈
X. Assume that x▽y = 0 = y▽x. Then (x∗y)∗φ(x∗y) = 0 = (y∗x)∗φ(y∗x).
Since φ is a deformation function of X, we obtain x ∗ y = 0 = y ∗ x, which
implies x = y, since X is a BCK-algebra. This proves (X,▽, 0) is a d-algebra.
Let a be a deformation point of X. Then a▽0 = (a∗0)∗φ(a∗0) = a∗φ(a) ̸= a,
proving (X,▽, 0) is not a BCK-algebra. □

We say (X,▽, 0) in Proposition 3.2 a deformed BCK-algebra of a BCK-
algebra (X, ∗, 0).

Example 3.3. Consider a BCK-algebra (X, ∗, 0) ([7, p. 244]).

∗ 0 1 2 3
0 0 0 0 0
1 1 0 0 0
2 2 1 0 0
3 3 2 1 0

Define two maps φ(0) = φ(1) = 0, φ(2) = 1, φ(3) = 0 and ψ(0) = ψ(1) =
0, ψ(2) = ψ(3) = 1. If we define x▽ y := (x ∗ y) ∗ φ(x ∗ y), x • y := (x ∗ y) ∗
ψ(x ∗ y), ∀x, y ∈ X, then we have two deformed BCK-algebras (X,▽, 0) and
(X, •, 0) respectively as follows:

▽ 0 1 2 3
0 0 0 0 0
1 1 0 0 0
2 1 1 0 0
3 1 1 1 0

• 0 1 2 3
0 0 0 0 0
1 1 0 0 0
2 1 1 0 0
3 2 1 1 0

Proposition 3.4. Let (X, ∗, 0) be a BCK-algebra and let φ be a deformation
function of X. If we define a binary operation▽ on X by x▽y := (x∗y)∗φ(x∗y)
for any x, y ∈ X, then

(i) x ∗ y = 0 implies x▽ y = 0,
(ii) x▽ 0 = x ∗ φ(x),
(iii) (x▽ y) ∗ x = 0,
(iv) (x▽ y)▽ x = 0.

Proof. For (iv). By (iii), (x▽y)∗x = 0. By applying (i), we obtain (x▽y)▽x =
0. □



318 P. J. ALLEN, H. S. KIM, AND J. NEGGERS

Example 3.5. Consider a BCK-algebra (X, ∗, 0) ([7, p. 245]).
∗ 0 1 2 3
0 0 0 0 0
1 1 0 0 1
2 2 1 0 2
3 3 3 3 0

If we define a map φ(0) = 0, φ(1) = 3, φ(2) = 1, φ(3) = 2, and define x▽ y :=
(x ∗ y) ∗ φ(x ∗ y), then it is easy to see that φ is a deformation function, but
(X,▽, 0) is not a BCK-algebra, since 2▽0 = 1 ̸= 2, i.e., (X,▽, 0) is a deformed
BCK-algebra.

The following question naturally arises: Are all d-algebras deformed BCK-
algebras? The answer is negative.

Example 3.6. Consider a BCK-algebra (X, ∗, 0) ([7, p. 246]).
∗ 0 1 2 3
0 0 0 0 0
1 1 0 1 0
2 2 2 0 0
3 3 3 3 0

If we define a map φ(0) = 0, φ(1) = 2, φ(2) = 1, φ(3) = 2, and define x▽ y :=
(x ∗ y) ∗ φ(x ∗ y), then it is easy to see that φ is a deformation function and
(X, ∗, 0) = (X,▽, 0).

We call such a function in Example 3.6 an invariant deformation function of
X. In Example 3.6, by routine calculations, there is no invariant deformation
function of X.

In a BCK-algebra X, we can define a binary relation ≤ by x ≤ y if and
only if x ∗ y = 0. We then observe that a BCK-algebra determines a poset
structure on it. Let (X,≤) be a poset with the least element 0. If we define a
binary operation ∗ on X as follows:

x ∗ y =

{
0 if x ≤ y,
x otherwise,

then the algebraic structure (X, ∗, 0) turns out to be a BCK-algebra (see [10]),
we call such an algebra a standard BCK-algebra inherited from the poset (X,
≤).

Theorem 3.7. The standard BCK-algebra does not have a deformed BCK-
algebra.

Proof. Let (X, ∗, 0) be a standard BCK-algebra and φ be any deformation
function. Define a binary operation ▽ on X by x▽y := (x∗y)∗φ(x∗y) for any
x, y ∈ X. If x ≤ y, then x∗y = 0 and hence x▽y = (x∗y)∗φ(x∗y) = 0∗φ(0) = 0.
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In the other case, we have x ̸≤ y and x▽y = (x∗y)∗φ(x∗y) = x∗φ(x). Since
(X, ∗, 0) is a standard BCK-algebra, it follows that

x ∗ φ(x) =

{
0 if x ≤ φ(x)
x otherwise

If we assume x ≤ φ(x), then x ∗ φ(x) = 0. Since φ is a deformation function,
we have x = 0, which means x = 0 ≤ y for any y ∈ X, a contradiction.
Hence the case “x ≤ φ(x)” cannot happen. Thus x▽ y = x ∗ φ(x) = x, i.e.,
(X,▽, 0) = (X, ∗, 0), proving the theorem. □

We say such a BCK-algebra (X, ∗, 0) an rigid BCK-algebra under any de-
formation function φ.

The following question arises: Are there any rigid BCK-algebras other than
the standard BCK-algebra? By routine calculations we see that the BCK-
algebra in Example 3.6 is a rigid BCK-algebra.

Since there are BCK-algebras which are not rigid, we may consider deforma-
tion functions φ such that x▽y = x∗y for all x, y ∈ X as invariant deformation
functions. Thus, if (X, ∗, 0) is a rigid BCK-algebra, then all deformation func-
tions are invariant deformation functions.

Now, we apply the notion of deformation functions to d-algebras.

Example 3.8. Let R be the set of all real numbers. Define a binary operation
“∗” on R by

x ∗ y := x(x− y), ∀x, y ∈ R.
Then (R, ∗, 0) is a d-algebra. If we define a map φ : R→ R by φ(x) = 2x, then
x ∗ φ(x) = −x2 ̸= 0 if x ̸= 0. Moreover, x ∗ φ(x) ̸= x for any x ∈ R\{0,−1}.
Thus φ is a deformation function and x▽ y = −x2(x − y)2. It is easy to see
that (R,▽, 0) is also a d-algebra.

Consider the condition that φ be an invariant deformation function of X
such that x▽ y = x ∗ y. Then x▽ y = x(x− y)(x(x− y)− φ(x(x− y)). Since
z > 0 means z =

√
z ∗ 0, z = 0 means z = 0 ∗ z, z < 0 means z =

√
|z| ∗ 2

√
|z|,

it follows that R ∗R = R. Hence x▽ y = x ∗ y = x(x− y) means z−φ(z) = 1,
and φ(z) = z − 1. But then x ∗ φ(x) = x(x − (x − 1)) = x and φ is not a
deformation function. Thus (R, ∗, 0) does not have any invariant deformation
function defined on it whatsoever.

4. Divisible d/BCK-algebras

An algebra (X, ∗, 0) is said to be divisible if for any non-zero x in X, there
exists an element x̂ in X such that x∗ x̂ ̸∈ {0, x}. We call such a x̂ an associator
of x. Note that such an associator is not unique in general. In Example 4.3
below, c, d are associators of b.
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Example 4.1. Let K be a field with |K| ≥ 3. If we define a binary operation
“∗” on K by x ∗ y := x(x − y), then it is easy to see that (K, ∗, 0) is a d-
algebra. Let u ̸∈ {0, 1}. Given x ̸= 0 in X, if we let x̂(x) := x − u, then
x ∗ x̂ = x(x− x̂) = xu ̸∈ {0, x}. Hence (K, ∗, 0) is a divisible d-algebra.

Example 4.2. Let X := [0, 1]. If we define a binary operation “∗” on X by
x ∗ y := max{0, x− y}, then it is easy to see that (X, ∗, 0) is a BCK-algebra.
Given x ̸= 0 in X, if we take x̂ := x/3, then x∗ x̂ = 2x/3 ̸∈ {0, x}, and (X, ∗, 0)
is a divisible BCK-algebra.

Example 4.3. Let X := {0, a, b, c, d} be a set with the following table:

∗ 0 a b c d
0 0 0 0 0 0
a a 0 d c b
b d b 0 c a
c d b c 0 b
d a b c d 0

Then it is easy to see that (X, ∗, 0) is a divisible d-algebra.

Proposition 4.4. Every standard BCK-algebra is not divisible.

Proof. Since X is a standard BCK-algebra, for any x, y ∈ X, we have x ∗ y ∈
{0, x}. This means that there is no x̂ in X such that x ∗ x̂ ̸∈ {0, x}. Hence X
is not divisible. □

Theorem 4.5. Every divisible algebra is a deformation algebra.

Proof. Let (X, ∗, 0) be a divisible algebra. If we define a map φ by φ(x) := x̂
for any non-zero x ∈ X and φ(0) is an arbitrary, where x̂ is an associator of x,
then x ∗ φ(x) = x ∗ x̂ ̸∈ {0, x} if x ̸= 0, proving φ is a deformation function.
Hence (X, ∗, 0) is a deformation algebra. □

Corollary 4.6. Every divisible d/BCK-algebra is a deformation d/BCK-
algebra.

The converse of Theorem 4.5 need not be true in general. In Example 3.6,
(X,▽, 0) is a deformation algebra, but not divisible, since 3 does not have 3̂

such that 3 ∗ 3̂ ̸∈ {0, 3}.

The following is a construction of a deformation algebra on any divisible
d-algebra.

Theorem 4.7. Let (X, ∗, 0) be a divisible d-algebra and let a ∈ X−{0}. Define
a map φa : X → X by φa(x) = 0 (x ̸= a) and φa(a) = â, where the choice of
sectors has been fixed. Then φa is a deformation function of X.
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Proof. Let (X, ∗, 0) be a divisible d-algebra and let a ∈ X −{0}. Define a map
φa : X → X by φa(x) = 0 (x ̸= a) and φa(a) = â, the choice of associators has
been fixed. Then we have

x ∗ φa(x) =

{
x ∗ 0 if x ̸= a,

a ∗ â otherwise.

Thus a ∗ φa(a) = a ∗ â ̸∈ {0, a}, since X is a divisible algebra. We claim that
φa is a deformation function of X. If x ̸= 0, then by (III) we obtain x ∗ 0 ̸= 0,
which means that x ∗ φa(x) = x ∗ 0 ̸= 0 when x ̸= a. □

Note that if the d-algebra has the property that x ∗ 0 = x (e.g., if it is an
edge d-algebra or a BCK-algebra), then x ∗ φa(x) = x if x ̸= a, and the only
non-fixed point of the action x → x ∗ φa(x) is a itself. In any case, divisible
d-algebras are quite rich in deformation functions.

If S is any subset of X\{0}, we let φS be defined by φS(x) = 0 if x ̸∈ S
and φS(x) = x̂ for x ∈ S. If the choice of the (non-unique) element x̂ has been
fixed, then we obtain a correspondence S ←→ φS , so that we may think of φS

as a “characteristic deformation function” for S ∈ P (X\{0}).

Proposition 4.8. Let (X, ∗, 0) be a divisible d-algebra and let ∅ ̸= S ⊂ X\{0}.
Let φS be a characteristic deformation function. If we define x▽ y := (x ∗ y) ∗
φS(x ∗ y) for any x, y ∈ X, then (X,▽, 0) is a d-algebra.

Proof. If x∗y ̸∈ S, then φS(x∗y) = 0 and hence x▽y = (x∗y)∗0. If x∗y ∈ S,
then x▽ y = (x ∗ y) ∗ (x̂ ∗ y) ̸∈ {0, x ∗ y}. Hence x▽ x = 0▽ x = 0 for any
x ∈ X. Suppose x▽ y = y ▽ x = 0. Then (x ∗ y) ∗ 0 = 0 = (y ∗ x) ∗ 0, since
the case x ∗ y ∈ S does not happen. Since (X, ∗, 0) is a d-algebra, we obtain
x ∗ y = 0 = y ∗ x and x = y, proving the proposition. □

Example 4.9. In Example 4.3, if we let S := {1, 2, 4} ⊂ X\{0} and if we
define φS(0) = φS(3) = 0 and φS(1) = 2, φS(2) = 3, φS(4) = 1, then we have
the following table:

▽ 0 a b c d
0 0 0 0 0 0
a a 0 b d c
b b c 0 d d
c b c d 0 c
d d c d b 0

If we let â = c, b̂ = d, d̂ = a, then it is easy to show that (X,▽, 0) is a divisible
d-algebra.

The following question arises: In Proposition 4.8, is the d-algebra (X,▽, 0)
always divisible? The answer is negative. Consider the following example.
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Example 4.10. In Example 4.3, if we take S := {0, 2, 3} and if we define
φS(0) = φS(2) = φS(3) = 0 and φS(1) = 2, φS(4) = 3, then we obtain the
following table:

▽ 0 a b c d
0 0 0 0 0 0
a d 0 d d d
b d d 0 d d
c d d d 0 d
d d d d d 0

which shows that the d-algebra (X,▽, 0) is not divisible.

The following question naturally arises: Under what condition(s) does the
d-algebra (X,▽, 0) become a divisible d-algebra?

Theorem 4.11. Let (X, ∗, 0) be a divisible d-algebra with conditions:

(VIII) (x ∗ y) ∗ 0 = x implies x ∗ y = x,
(IX) if x ∗ x̂ = a, then a ∗ â ̸∈ {0, a, x}.

Define a binary operation “▽” on X by

x▽ y := (x ∗ y) ∗ φa(x ∗ y), ∀x, y ∈ X.

Then (X,▽, 0) is a divisible d-algebra.

Proof. Since φa is a deformation function, it is easy to show that (X,▽, 0) is a
d-algebra. Given x ̸= 0 inX, suppose that x∗x̂ ̸= a. Then x▽x̂ = (x∗x̂)∗φa(x∗
x̂) = (x ∗ x̂) ∗ 0. We claim that x▽ x̂ ̸∈ {0, x}. In fact, assume that x▽ x̂ = 0.
Then (x ∗ x̂) ∗ 0 = 0. Since (X, ∗, 0) is a d-algebra, we have x ∗ x̂ = 0, which
means that (X, ∗, 0) is not divisible, a contradiction. Assume that x▽ x̂ = x.
Then x = (x∗ x̂)∗0. By applying (VIII) we obtain x = x∗ x̂, which means that
(X, ∗, 0) is not divisible, a contradiction. Next, we consider the case x ∗ x̂ = a.
x▽ x̂ = (x ∗ x̂) ∗ φa(x ∗ x̂) = a ∗ φa(a) = a ∗ â ̸∈ {0, x} by Theorem 4.7. By
(IX) x ∗ x̂ = a implies a ∗ â ̸∈ {0, a, x}. Hence x▽ x̂ ̸∈ {0, a, x} ⊃ {0, x}. Hence
(X,▽, 0) is divisible. □

Example 4.12. In Example 4.2, if we let x̂ := x/3 for any x ̸= 0 in X, then
(X, ∗, 0) is a divisible BCK-algebra. Consider the condition (VIII). Assume
that x∗ x̂ = a. Then a∗ â = 2a/3 = 4x/9 < x for x > 0. Hence a∗ â ̸∈ {0, a, x}.
The condition (IX) holds trivially. By Theorem 4.11, (X,▽, 0) is a divisible
d-algebra. But it is not a BCK-algebra, since 2x/3▽ 0 = 4x/9 ̸= 2x/3.

Consider the following condition for a BCK-algebra (X, ∗, 0)
(X) if (x ∗ y) ∗ z = x and x ̸= 0, then y = 0.

Then also z = 0, since (x ∗ y) ∗ z = (x ∗ z) ∗ y.

Note that not all BCK-algebras satisfy condition (X).
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Example 4.13. Let (X, ∗, 0) be the standard BCK-algebra of a poset (X,≤, 0)
with minimal element 0. If x ̸≤ y, y ̸≤ x, z ̸≤ x, x ̸≤ z, y ̸≤ z, z ̸≤ y, i.e., {x, y z}
is an antichain, then (x ∗ y) ∗ z = x ∗ z, x ̸= 0 and z ̸= 0, whence condition (X)
fails for such BCK-algebras.

Example 4.14. The BCK-algebra in Example 4.2 satisfies condition (X). In
fact, if we let x ̸= 0, (x ∗ y) ∗ z = x, then x = max{0, x ∗ y − z} = x ∗ y − z. It
follows that max{0, x− y} = x ∗ y = z + x ≥ x > 0. Hence x− y = z + x and
y + z = 0, proving y = z = 0. Thus (X, ∗, 0) satisfies condition (X).

Proposition 4.15. Let (X, ∗, 0) be a divisible BCK-algebra with condition
(X). Then condition (IX) holds.

Proof. Let (X, ∗, 0) be a divisible BCK-algebra with condition (X). Suppose
that x∗ x̂ = a and consider a∗ â = b. We note that from the divisibility we have
a ̸∈ {0, x} and b ̸∈ {0, a}. If a ∗ â ∈ {0, a, x}, then a ∗ â = x and (x ∗ x̂) ∗ â = x.
By condition (X) it follows that x̂ = 0 and a = x ∗ x̂ = x ∗ 0 = x ∈ {0, x}, a
contradiction. Hence a ∗ â ̸∈ {0, a, x} and condition (IX) holds. □

An element m of a d-algebra (X, ∗, 0) is said to be maximum if x ∗m = 0
for all x ∈ X.

Proposition 4.16. Let (X, ∗, 0) be a divisible d-algebra. Then no element can
have m as a sector of it.

Proof. Straightforward. □
Note that m ∗ m̂ ̸∈ {0,m} implies 0 ∗ m̂ = 0, m̂ ∗m = 0, i.e., 0 ̸= m̂ ̸= m.

Since X is divisible and m is maximal element, ̂̂m ̸∈ {0,m, m̂}. We have a
question: Can a divisible d-algebra (X, ∗, 0) be constructed with |X| = 4? The
answer is yes. Consider the following table:

∗ 0 m̂ ̂̂m m
0 0 0 0 0

m̂ m̂ 0 ̂̂m 0̂̂m ̂̂m m̂ 0 0

m m m̂ ̂̂m 0

5. Comments

In the foregoing we have observed that from d/BCK-algebras, new exam-
ples may be constructed via the deformation process. This brought to the fore-
ground interesting classes of d/BCK-algebras, viz., the rigid d/BCK-algebras
and the divisible BCK-algebras. Whereas the rigid BCK-algebras seem to be
modeled on edge d-algebras and the standard BCK-algebras associated with
posets with minimum elements, the class of divisible d/BCK-algebras seems
to be much larger in some sense as well as perhaps more mysterious and in
need of closer analysis.
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